Summary: Particle and Planar Rigid Body Kinetics

WHICH TOOL(s) TO USE?

Put effort up front deciding on which method(s) to use: Newton-Newton/Euler, work/energy, linear impulse momentum or angular impulse momentum. Use the Kinetics Table in Section 5.D of the lecture book as a guide.

PARTICIF or RIGID BODY?

How is a particle distinguished from a rigid body? For a *particle*, we have:

$$\sum \bar{M}_G = I_G \vec{lpha} = \vec{0}$$
 (EITHER $I_G = 0$ OR $\vec{lpha} = \vec{0}$)

THE FOUR-STEP PLAN: Follow it...it is your friend!

Method	Body model	Fundamental equations
Newton-Euler (relating forces to accelerations)	particle	$\sum \vec{F} = m\vec{a}$
	rigid body (G = c.m. and A = any point on body)	$\begin{split} \sum \vec{F} &= m\vec{a}_G \\ \sum \vec{M}_A &= I_A \vec{\alpha} + m\vec{r}_{G/A} \times \vec{a}_A \end{split}$
Work-energy (relating change in speed to change in position)	particle	$T_1 + V_1 + U_{1 \to 2}^{(nc)} = T_2 + V_2$ where $T = \frac{1}{2}mv^2$
	rigid body (G = c.m. and A = any point on body)	$\begin{split} T_1 + V_1 + U_{1 \to 2}^{(nc)} &= T_2 + V_2 \\ where \ T &= \frac{1}{2} m v_A^2 + \frac{1}{2} I_A \omega^2 + m \vec{v}_A \bullet (\vec{\omega} \times \vec{r}_G / \vec{\omega}) \end{split}$
Linear impulse- momentum (relating change in velocity to change in time)	particle	$\int_{t_1}^{t_2} \sum_{i_1} \vec{F} dt = m\vec{v}_2 - m\vec{v}_1$
	rigid body (G = c.m.)	$\int_{t_1}^{t_2} \sum_{i_1} \vec{F} dt = m \vec{v}_{G2} - m \vec{v}_{G1}$
Angular impulse- momentum (relating change in angular velocity to change in time)	particle (O = fixed point)	$\begin{split} & \int\limits_{t_1}^{t_2} \sum \vec{M}_O dt = \vec{H}_{O2} - \vec{H}_{O1} \\ & where \ \vec{H}_O = m \vec{r}_{P/O} \times \vec{v}_P \end{split}$
	rigid body (A = fixed point or c.m.)	$\int_{t_{1}}^{t_{2}} \sum_{\vec{M}_{A}} \vec{M}_{A} dt = \vec{H}_{A2} - \vec{H}_{A1}$