
Summary: Newton/Euler Equations 1

FUNDAMENTAL equations:

- (1) $\sum \vec{F} = m\vec{a}_G$
- (2) $\sum \vec{M}_{A} = I_{A} \vec{\alpha} + m \vec{r}_{G/A} \times \vec{a}_{A}$ SAME point "A"!

CRITICAL ISSUES:

- For NEWTON (1): G must be the center of mass of the body
- For EULER (2): A is <u>ANY point on the body</u>. The same point "A" must be used across the board in the equation you cannot mix and match points A.

SIMPLIFICATION: If A is: <u>EITHER</u> the center of mass G <u>OR</u> a fixed point (zero acceleration) <u>OR</u> \vec{a}_A is parallel to $\vec{r}_{G/A}$, then the Euler equation (2) reduces to:

TERMINOLOGY: I_A is known as the "mass moment of inertia" of the body about point A. The size of I_A is dependent on the location of A.