Summary: Particle Kinematics - Joint Description

PROBLEM: Motion of a point described in a combination of descriptions.

SOLUTION: Projection of vector onto different set of unit vectors. Examples:
$\dot{x}=\vec{v}_{P} \cdot \hat{i}$
$\dot{v}_{P}=\vec{a}_{P} \cdot \hat{e}_{t}=\vec{a}_{P} \cdot\left(\frac{\vec{v}_{P}}{\left|\vec{v}_{P}\right|}\right)$
$\dot{R}=\vec{v}_{P} \cdot \hat{e}_{R}$
$R \dot{\theta}=\vec{v}_{P} \cdot \hat{e}_{\theta}$
$\ddot{x}=\vec{a}_{P} \bullet \hat{i}$
$\frac{v_{P}^{2}}{\rho}=\vec{a}_{P} \cdot \hat{e}_{n}$
$\ddot{R}-R \dot{\theta}^{2}=\vec{a}_{P} \cdot \hat{e}_{R}$
$R \ddot{\theta}+2 \dot{R} \dot{\theta}=\vec{a}_{P} \cdot \hat{e}_{\theta}$

