Summary: Particle Kinematics – Polar Description

- 1. PROBLEM: Motion of a point described in polar coordinates, R and θ .
- 2. FUNDAMENTAL EQUATIONS:

 $\vec{v}_{P} = \dot{R}\hat{e}_{R} + R\dot{\theta}\hat{e}_{\theta} = velocity of P$ $\vec{a}_{P} = \left(\ddot{R} - R\dot{\theta}^{2}\right)\hat{e}_{R} + \left(R\ddot{\theta} + 2\dot{R}\dot{\theta}\right)\hat{e}_{\theta} = acceleration of P$

where \hat{e}_R and \hat{e}_{θ} are the radial and transverse unit vectors.

- 3. OBSERVATIONS: In regard to the polar description kinematics, we see
 - <u>You</u> are free to choose the observation point O.
 - $\hat{e}_R \underline{always}$ points OUTWARD from O to P. \hat{e}_{θ} is perpendicular to \hat{e}_R and in direction of increasing θ .
 - Polar description is useful for problems with observers or rotations about fixed axes.
 - Do not confuse the unit radial vector \hat{e}_R with the unit normal vector \hat{e}_n .

me 274 - cmk