Summary: Particle Kinematics - Polar Description

1. PROBLEM: Motion of a point described in polar coordinates, R and θ.
2. FUNDAMENTAL EQUATIONS:

$$
\begin{aligned}
& \vec{v}_{P}=\dot{R} \hat{e}_{R}+R \dot{\theta} \hat{e}_{\theta}=\text { velocity of } P \\
& \vec{a}_{P}=\left(\ddot{R}-R \dot{\theta}^{2}\right) \hat{e}_{R}+(R \ddot{\theta}+2 \dot{R} \dot{\theta}) \hat{e}_{\theta}=\text { acceleration of } P
\end{aligned}
$$

where \hat{e}_{R} and \hat{e}_{θ} are the radial and transverse unit vectors.
3. OBSERVATIONS: In regard to the polar description kinematics, we see

- You are free to choose the observation point O.
- \hat{e}_{R} always points OUTWARD from O to $\mathrm{P} . \hat{e}_{\theta}$ is perpendicular to \hat{e}_{R} and in direction of increasing θ.
- Polar description is useful for problems with observers or rotations about fixed axes.
- Do not confuse the unit radial vector \hat{e}_{R} with the unit normal vector \hat{e}_{n}.

