Summary: Particle Kinematics - Path Description

1. PROBLEM: Motion of a point described in path variables.
2. FUNDAMENTAL EQUATIONS:

$$
\begin{aligned}
& \vec{v}_{P}=v_{P} \hat{e}_{t}=v e l o c i t y \text { of } P \\
& \vec{a}_{P}=\dot{v}_{P} \hat{e}_{t}+\frac{v_{P}^{2}}{\rho} \hat{e}_{n}=\text { acceleration of } P
\end{aligned}
$$

where \hat{e}_{t} and \hat{e}_{n} are unit vectors tangent and (inwardly) normal to the path.
3. OBSERVATIONS: In regard to the path description kinematics, we see

- Velocity is ALWAYS tangent to the path.
- Acceleration, in general, has BOTH normal and tangential components.
- Note that acceleration depends on three factors: speed v_{P}, rate of change of speed \dot{v}_{P} and radius of curvature of the path ρ.
- Rate of change of speed is the projection of acceleration onto the unit tangent vector: $\dot{v}_{P}=\vec{a}_{P} \bullet \hat{e}_{t}$
- Rate of change of speed is NOT equal to the magnitude of acceleration:

$$
\left|\vec{a}_{P}\right|=\sqrt{\dot{v}_{P}^{2}+\left(v_{P}^{2} / \rho\right)^{2}} \neq\left|\dot{v}_{P}\right|
$$

