## Summary: Particle Kinematics - Cartesian Description

1. PROBLEM: Motion of a point is described in Cartesian $x y$-coordinates.
2. FUNDAMENTAL EQUATIONS:

$$
\begin{aligned}
& \qquad \vec{v}_{P}=\dot{x} \hat{i}+\dot{y} \hat{j}=\text { velocity of } P \\
& \vec{a}_{P}=\ddot{x} \hat{i}+\ddot{y} \hat{j}=\text { acceleration of } P \\
& \text { with } \dot{x}=\frac{d x}{d t}, \text { etc. }
\end{aligned}
$$


3. CHAIN RULE OF DIFFERENTIATION: Suppose that $y$ is given in terms of $x$ (instead of time $t$ ) - how do you find $\dot{y}=d y / d t$ ??

The chain rule!! $\dot{y}=\frac{d y}{d t}=\frac{d y}{d x} \frac{d x}{d t}=\dot{x} \frac{d y}{d x}$
( $\leftarrow$ remember this!)
4. COMMENT: The Cartesian description is easy to use, but not as useful as other descriptions. More later...

