# Homework H4.L - Fa22

DISCUSSION and HINTS

Initially Block A slides to the right along Block B which is traveling to the right. However, with friction acting between A and B, both A and B slow down. At some point, A instantaneously comes to rest, and the starts to move to the left. Once the speed of A to the left matches that of the speed of B to the left, the two stick and move together. You can see this in the animation that follows.

Recall the following four-step plan outline in the lecture book and discussed in lecture:

Step 1: FBDs
Draw single free body diagram (FBD) for the entire system (A+B). Do NOT consider A and B in separate FBDs because you will need to deal with the friction force acting between A and B (which you do not know).

Step 2: Kinetics (linear impulse/momentum)
Consider all of the external forces that you included in your FBD above. If there are no external forces acting in the horizontal direction (x-direction) on your system, the linear momentum in the x-direction is conserved.

Step 3: Kinematics
A described above, A comes to rest with respect to B when vA = vB.

Step 4: Solve
Combine your kinetics equation from Step 2 with your kinematics that you found in Step 3, and solve for the velocity of B.

QUESTION: Are you surprised that your answer for the final speed of B (and A) does not depend on the coefficient of friction acting between A and B? I was the first time that I worked the problem. ðŸ™‚

## 2 thoughts on “Homework H4.L - Fa22”

1. Kenneth T Nakayama says:

Why does friction not play a role in the final speed of B and A? If the two blocks velocities are equal at a certain point due to friction correct?

1. George West Wehmann says:

When you set the system using both blocks, there are no external forces acting on them. Thus, momentum is conserved.