You do not need to include system diagram, assumptions, and basic equations for HW-1; these items are required for HW-2.

HW - 1(i)

Numerical values of temperature, pressure, and specific volume are given in the table below.

P = 7 bar		P = 8 bar	
T (°C)	$v \text{ (m}^3/\text{kg)}$	T (°C)	$v \text{ (m}^3/\text{kg)}$
50	0.21289	50	0.18461
80	0.23672	80	0.20588

- (a) For P = 7 bar and $T = 60^{\circ}$ C, linearly interpolate to find specific volume, in m³/kg.
- (b) For P = 7.4 bar and T = 50°C, linearly interpolate to find the specific volume, in m³/kg.
- (c) For P = 7.4 bar and T = 60°C, linearly interpolate to find the specific volume, in m³/kg.

HW - 1(ii)

You do not need to include system diagram, assumptions, and basic equations for this problem. Evaluate the following integrals.

(a)
$$I_1 = \int_{5}^{10} \frac{dx}{x}$$

(b)
$$I_2 = \int_{0.1}^{0.3} \frac{dx}{x^{1.5}}$$

HW-2

Consider the ideal gas equation of state: $PV = mRT = n\overline{R}T$

where
$$R = \frac{\overline{R}}{M}$$
 and $\overline{R} = 8.314 \frac{\text{kJ}}{\text{kmol-K}}$

HW - 2(i)

A spherical balloon of 10 m diameter is filled with helium gas (molecular weight M = 4 kg/kmol) at a temperature of 20°C and an absolute pressure of 5 bar.

(a) Calculate the mass of helium gas in the balloon, in kg.

When the balloon rises through the atmosphere, the helium gas is heated to 150°C with negligible change in the balloon volume.

(b) Find the final absolute pressure of helium gas, in bar.

HW - 2(ii)

A closed piston-cylinder system contains air (molecular weight M = 28.97 kg/kmol) at a temperature of 27°C and an absolute pressure of 100 kPa.

(a) Determine the specific volume of air, in m³/kg.

Air in the cylinder is heated without changing its temperature until its volume doubles.

- (b) Does the specific volume of air in the cylinder decrease, increase, or remain the same? Justify with equation(s).
- (c) Does the pressure of air in the cylinder decrease, increase, or remain the same? Justify with equation(s).