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Example IV.5.1
A string that is tautly stretched between two rigid supports is acted upon by a harmonically time
varying force, f(x, t) = f0�(x � a)sin⌦t, where �(x � a) is the Dirac delta function centered at
x = a. Find the unoupled modal EOM’s for the string.



Example IV.5.1  
A string that is tautly stretched between two rigid supports is acted upon by four different 
types of forcing. Using modal uncoupling, find the forced portion of the response of the 
string for: 

a) 

� 

f x, t( ) = F x( )sinΩt  with 

� 

F x( ) = f0  = constant. 
 
 
 
 
 
 
 
 

b) 

� 

f x, t( ) = F x( )sinΩt  with F(x) shown below. 
 
 
 
 
 
 
 
 
 

c) 

� 

f x, t( ) = F x( )sinΩt  with 

� 

F x( ) = f0 sin2π
x
L

 

 
 
 
 
 
 
 
 
 

d) 

� 

f x, t( ) = F x( )sinΩt  with 

� 

F x( ) = f0δ x − a( )  where 

� 

δ x − a( ) is the Dirac delta 
function1 centered at x = a. 

 
 
 

                                                
1 See the Help Files link on the course website for more information the Dirac 

delta function. 

F(x) 

x = 0 x = L 

F(x) 

x = 0 x = L x = L/2 

f0 

F(x) 

x = 0 x = L 

F(x) = f0 δ(x-a) 

x = 0 x = L x = a 



Modal EOM’s: 
 
 

� 

˙ ̇ q j + ω j
2q j = ˆ f j t( )  

 
where the modal forcing terms are given by: 
 

 

� 

ˆ f j t( ) = ˜ φ j( ) x( ) f x, t( ) dx
0

L

∫

= ˜ φ j( ) x( )F x( ) dx
0

L

∫
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

sinΩt

= ˆ F j sinΩt

 

 
The particular solution of the modal equations is given by: 
 

 

� 

q jp t( ) =
ˆ F j /ω j

2

1−Ω2 /ω j
2 sinΩt  

 
Therefore, 
 

 

� 

up x, t( ) = ˜ φ j( ) x( ) q jp t( )
j=1

∞

∑

= ˜ φ j( ) x( )
ˆ F j /ω j

2

1−Ω2 /ω j
2

j=1

∞

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
sinΩt

 

 
From before, we know that the natural frequencies and mass-normalized modal functions 
are, respectively: 
 

 

� 

ω j = jπ T
ρL2

 

 

 

� 

˜ φ j( ) = 2
ρL

sin jπ x
L

 

 
Therefore, 
 

 

� 

ˆ F j = ˜ φ j( ) x( )F x( ) dx
0

L

∫

= 2
ρL

F x( )sin jπ x
L

dx
0

L

∫
 



� 

F x( ) = f0  = constant for (a) 
 

� 

ˆ F j = 2
ρL

f0 sin jπ x
L

dx
0

L

∫

= 2
ρL

f0 − L
jπ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cos jπ x

L
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

x= 0

x= L

= 2
ρL

f0
L
jπ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 1− cos jπ[ ]

=

0 ; j = 2,4,6,...

f0

jπ
8L
ρ

; j = 1,3,5,...

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

 
 
Therefore, from above: 
 

 

� 

up x, t( ) = ˜ φ j( ) x( )
ˆ F j /ω j

2

1−Ω2 /ω j
2

j=1

∞

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
sinΩt

= 8L
ρ

f0

˜ φ j( ) x( )
jπ

1/ω j
2

1−Ω2 /ω j
2

j= odd
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
sinΩt

= 8L
ρ

f0
2
ρL

sin jπx /L
jπ

ρL2 / jπ( )2T
1−Ω2 /ω j

2
j= odd
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
sinΩt

= 4 f0L
2

T
sin jπx /L

jπ( )3
1

1−Ω2 /ω j
2

j= odd
∑

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
sinΩt

= U x( )sinΩt

 

 
where 
 

 

� 

U x( ) = B j x( ) H Ω /ω j( )
j= odd
∑  

 

 

� 

B j x( ) = 4 f0L
2

T
sin jπx /L

jπ( )3
 

 

 

� 

H Ω /ω j( ) = 1
1−Ω2 /ω j

2  



� 

F x( ) as shown in figure for (b) 
 

� 

ˆ F j = 2
ρL

F x( )sin jπ x
L

dx
0

L

∫

= 2
ρL

f0 sin jπ x
L

dx
L / 2

L

∫

= 2
ρL

f0 − L
jπ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cos jπ x

L
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

x= L / 2

x= L

= 2
ρL

f0
L
jπ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cos jπ

2
− cos jπ

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

=

0 ; j = 4,8,12,...

2
ρL

f0
L
jπ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ cos jπ

2
− cos jπ

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ; j = 1,3,5,...

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

 
 
Therefore, from above: 
 

 

� 

up x, t( ) = ˜ φ j( ) x( )
ˆ F j /ω j

2

1−Ω2 /ω j
2

j=1

∞

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
sinΩt = U x( )sinΩt  

 
where 
 

 

� 

U x( ) = B j x( ) H Ω /ω j( )
j=1

∞

∑  

 

 

� 

B j x( ) = 2 f0L
2
cos jπ

2
− cos jπ

jπ( )3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
sin jπx /L  

 

 

� 

H Ω /ω j( ) = 1
1−Ω2 /ω j

2  

 
 



� 

F x( ) = f0δ x − a( )  for (d) 
 

� 

ˆ F j = 2
ρL

f0 δ x − a( )sin jπ x
L

dx
0

L

∫

= 2
ρL

f0 sin jπ a
L

 

 
 
Therefore, from above: 
 

 

� 

up x, t( ) = ˜ φ j( ) x( )
ˆ F j /ω j

2

1−Ω2 /ω j
2

j=1

∞

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
sinΩt

= 2
ρL

f0
˜ φ j( ) x( ) sin jπ a

L
1/ω j

2

1−Ω2 /ω j
2

j=1

∞

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
sinΩt

= 2
ρL

f0
2
ρL

sin jπx /L( ) sin jπ a
L

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

ρL2 / jπ( )2T
1−Ω2 /ω j

2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

j=1

∞

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
sinΩt

= 2 f0L
T

sin jπx /L
jπ( )2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ sin jπ a

L
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1
1−Ω2 /ω j

2
j=1

∞

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
sinΩt

= U x( )sinΩt

 

 
where 
 

 

� 

U x( ) = B j x( ) H Ω /ω j( )
j=1

∞

∑  

 

 

� 

B j x( ) = 2 f0L
T

sin jπx /L
jπ( )2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ sin jπ

a
L

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟  

 

 

� 

H Ω /ω j( ) = 1
1−Ω2 /ω j

2



Summary 
We have seen that the general form of the solution for problems a) – d) above can be 
written in the general form of 
 

 

� 

up x, t( ) =U x( )sinΩt = B j x( ) H Ω /ω j( )
j=1

∞

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
sinΩt  

 
As in the discrete model case, we see that the forced response is a linear combination of 
the modal functions with the contribution of each mode depending on the excitation 
frequency. This also corresponds to a synchronous motion, with the “shape” of the 
response, U(x), not changing with time. For a given value of x, the frequency response 
function can be sketched as in the discrete models (see last example). 
 
The difference among the four string examples studied here lies in the contribution of the 
modal functions to these functions 

� 

B j x( )  making up U(x). In each case, there are some 
modes that make no contribution, and the contribution of the participating modes 
decreasing with higher mode numbers. Considering problems a) – d) individually: 

a) Here, only the odd-number modes make a contribution to the response. Can you 
see why the even-numbered modes do not add to the response? The contribution 
of the odd-numbered modes decreases with the cube of the mode number, 

� 

1/ j 3 . 

b) For this problem, mode numbers 4, 8, 12, 16,… do not contribute to the response. 
Can you see why this is true? The contribution of the participating modes 
decreases with the cube of the mode number, 

� 

1/ j 3 . 

c) This is the problem that you worked out. You should have found the response to 
be quite simple since very few modes contribute to the response. Can you see why 
this is true? 

d) For the case of the point load, the modes for which 

� 

sin jπa /L( ) = 0 . That is, if the 
point load is applied at the node of the jth mode, the jth mode cannot make any 
contribution to the response. For example, if 

� 

a = L /3, then modes of j = 
3,6,9,12,… are not excited. Can you see why this is true? 


