Example A5.1

Given: An automobile moves along a wavy roadway with a constant speed, where the surface of the roadway is idealized by $y(z)=y_{0} \sin 2 \pi z / L$. The single-DOF model below is to be used to represent the vertical motion of the automobile body. Let the coordinate x represent the motion of the automobile body relative to the static equilibrium position.

Find: For given values of L, m, y_{0} and v, you are asked to design the automobile suspension (that is, choose k and c) according to the criteria below:

- The amplitude of the vertical motion of the body is no larger than 4 percent of the road roughness amplitude y_{0}.
- The transmissibility of the vertical force to the suspension by the roadway is no larger than 1.2 when the automobile is traveling at a speed corresponding to the undamped natural frequency of the system.

$\stackrel{\rightharpoonup}{6}$
$\stackrel{\rightharpoonup}{0}$

$$
\begin{aligned}
f_{0} & =y_{0} \sqrt{(c \Omega)^{2}+k^{2}} \\
& =k y_{0} \sqrt{1+\left(\frac{c \Omega}{k}\right)^{2}} \\
& =k y_{0} \sqrt{1+\left(\frac{c}{\sqrt{k m}} \frac{\Omega}{\sqrt{k / m}}\right)^{2}} \\
& =k y_{0} \sqrt{1+\left(2 \zeta \frac{\Omega}{\omega_{n}}\right)^{2}}
\end{aligned}
$$

(The above can be used from the results from a previous homework set.)
As shown in lecture, the amplitude of steady-state response $X(\Omega)$ can be written in terms of the transmissibility function:

$$
\frac{X}{y_{0}}=T(\Omega)=\frac{\sqrt{1+\left(2 \zeta \frac{\Omega}{\omega_{n}}\right)^{2}}}{\sqrt{\left[1-\left(\frac{\Omega}{\omega_{n}}\right)^{2}\right]^{2}+\left[2 \zeta \frac{\Omega}{\omega_{n}}\right]^{2}}}
$$

When the automobile speed corresponds to that of the undamped natural frequency ($\Omega=2 \pi \nu / L=\omega_{n}$), it is desired to have an amplitude ratio of $X / y_{0}=1.2$; that, is:

$$
1.2=\frac{\sqrt{1+4 \zeta^{2}}}{2 \zeta} \Rightarrow 1.2^{2}=\frac{1+4 \zeta^{2}}{4 \zeta^{2}} \Rightarrow \zeta=\sqrt{\frac{1}{1.2^{2}(4)-4}}=0.754
$$

Also, we need to choose ω_{n} such that $T=0.04$ for the design speed v (where $r=\Omega / \omega_{n}$):

$$
\begin{aligned}
& 0.04=\frac{\sqrt{1+4 \zeta^{2} r^{2}}}{\sqrt{\left[1-r^{2}\right]^{2}+4 \zeta^{2} r^{2}}} \Rightarrow \\
& 0.04^{2}=\frac{1+4 \zeta^{2} r^{2}}{r^{4}+\left(4 \zeta^{2}-2\right) r^{2}+1} \Rightarrow \\
& r^{4}+\left(4 \zeta^{2}-2\right) r^{2}+1=\frac{1}{0.04^{2}}\left[1+4 \zeta^{2} r^{2}\right] \Rightarrow \\
& r^{4}-\left(2496 \zeta^{2}+2\right) r^{2}-624=0 \Rightarrow \\
& r^{4}-1421 r^{2}-624=0 \quad \Rightarrow \\
& r^{2}=\frac{1421+\sqrt{1421^{2}+(4)(624)}}{2}=1421.4 \Rightarrow \\
& r=\sqrt{1421.4}=37.7=\frac{2 \pi v / L}{\omega_{n}} \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \omega_{n}=\frac{2 \pi v / L}{37.7}=0.053 \frac{\pi v}{L}=\sqrt{\frac{k}{m}} \Rightarrow \\
& k=m\left(0.053 \frac{\pi v}{L}\right)^{2}
\end{aligned}
$$

Also,

$$
2 \zeta \omega_{n}=\frac{c}{m} \Rightarrow c=2 \zeta m \omega_{n}=2(0.754) m\left(\frac{2 \pi v / L}{37.7}\right)=0.08 \pi \frac{m v}{L}
$$

