Example A4.19

Given: Consider the bending beam shown below with a concentrated harmonic force acting at the mid-length point C on the beam.

Find: For this problem:
a) Use the modal uncoupling approach to determine the particular solution $w_{P}(t)=W(x) \sin \Omega t$ of the beam's EOM.
b) Make a hand sketch of $|W(x=L / 2)|$ vs. Ω for a range of values of Ω covering up through the first four resonances of the response. Provide details on how you arrived at this hand sketch.

$$
\begin{aligned}
& \Rightarrow \quad \omega_{i}=\beta_{i}^{2} \sqrt{\frac{E I}{\rho A}}=\left(\frac{2 j-1}{2} \pi\right)^{2} \sqrt{\frac{E I}{\rho A L^{4}}} \\
& \Leftrightarrow W^{(j)}(x)=\phi_{i}^{\prime} \cos \beta_{j} x=\cos \frac{2 j^{-1}}{2} \pi \frac{x}{L}
\end{aligned}
$$

(You are allowed to use results above directly from previous homework assignment.)
Forced Response
Forced beam EOM:

$$
\begin{equation*}
E I \frac{\partial^{4} w}{\partial x^{4}}+\rho A \frac{\partial^{2} w}{\partial t^{2}}=f(x, t) \tag{3}
\end{equation*}
$$

Modal expansion:

$$
\begin{equation*}
w(x, t)=\sum_{j=1}^{\infty} w^{(G)}(x) p_{j}(t) \tag{4}
\end{equation*}
$$

Substitute (4) into (3), multiply by $w^{(t)}(k) \&$

$$
\begin{aligned}
& \int_{0}^{L}(\cdot) d x: \\
& \begin{aligned}
E I & =0 ; k \neq j \\
\sum_{j}^{c} & \left.=\int_{0}^{c} W^{(k)} \frac{d^{4} w^{(\xi)}}{d x^{4}} d x\right) \rho_{j} \\
& \left.+\rho A \sum_{j}^{\sum_{j}\left(\int_{0}^{L} W^{(k)} W^{j}\right)} d x\right) \\
& \ddot{p}_{j}=\int_{0}^{L} W^{(k)} f(x, t) d x
\end{aligned}
\end{aligned}
$$

$$
\left[\rho A \int_{0}^{L} W^{(j) 2} d x\right] \ddot{P}_{j}+\left[E I \int_{0}^{L} W^{(j)} \frac{d^{4} W^{(j)}}{d x^{4}} d x\right] P_{i}
$$

or,

$$
\ddot{p}_{j}+\omega_{j}^{2} p_{j}=\hat{f}_{j} \sin \Omega t
$$

The particular solutions for these modally-uncoupled EOMs are given by:

$$
p_{j P}(t)=\frac{\hat{f}_{j}}{\omega_{j}^{2}-\Omega^{2}} \sin \Omega t
$$

Therefore, the beam response is:

$$
\begin{aligned}
w_{P}(x, t) & =\sum_{j=1}^{\infty} W^{(j)}(x) p_{j P}(t) \\
& =\left\{\sum_{j=1}^{\infty} W^{(j)}(x)\left(\frac{\hat{f}_{j}}{\omega_{j}^{2}-\Omega^{2}}\right)\right\} \sin \Omega t \\
& =W(x) \sin \Omega t
\end{aligned}
$$

From this, we have:

$$
\begin{aligned}
W\left(\frac{L}{2}\right) & =\sum_{j=1}^{\infty} W^{(j)}\left(\frac{L}{2}\right)\left(\frac{\hat{f}_{j}}{\omega_{j}^{2}-\Omega^{2}}\right) \\
& \left.=f_{0} \sum_{j=1}^{\infty} \frac{\left[W^{(j)}\left(\frac{L}{2}\right)\right]^{2}}{\left(\rho A \int_{0}^{L} W^{(j) 2} d x\right.}\right)\left(\frac{1}{\omega_{j}^{2}-\Omega^{2}}\right)
\end{aligned}
$$

Comments:

- Resonances will occur for the jth mode when $\Omega=\omega_{j}$, unless $W^{(j)}(L / 2)=0$.
- Anti-resonances will occur between every pair of resonances since the coefficient of $1 /\left(\omega_{j}^{2}-\Omega^{2}\right)$ in the above sum is positive for all modes.

