Example A4.13

Given: Consider the single-DOF model of an automotive system shown below as the automobile moves along a wavy-surfaced roadway with a constant speed of v. The profile of the roadway is given by $y(z)=y_{0} \sin (\pi z / L)$. Let x represent the vertical motion of the automobile body B as measured from the stretched position of the body. Assume that the wheel A does not lose contact with the roadway surface as the system moves along the road.

Find: For this problem:
a) Derive the equation of motion (EOM) of the system in terms of the coordinate x. Transform this EOM to be in terms of the coordinate $r=x-m g / k$.
b) Write down the particular solution $r_{P}(t)$ for your EOM. Make a hand sketch of the UNDAMPED response amplitude of $r_{P}(t)$ vs. the temporal excitation frequency. Scale the response amplitude by y_{0} and the frequency by $\sqrt{k / m}$.
c) Let $F(t)$ represent the time-varying portion (i.e., excluding the influence of weight) of the force acting on A by the roadway. Derive an expression the particular solution $F_{P}(t)$. Make a hand sketch of the UNDAMPED response amplitude of $F_{P}(t)$ vs. the temporal excitation frequency. Scale the response amplitude by $k y_{0}$ and the frequency by $\sqrt{k / m}$.

SOLUTION

$$
\begin{aligned}
T & =\frac{1}{2} m \dot{x}^{2} \\
U & =\frac{1}{2} k(x-y)^{2}-m g x \\
R & =\frac{1}{2} c(\dot{x}-\dot{y})^{2}
\end{aligned}
$$

with $z=v t$. Therefore, $y(t)=y_{0} \sin \left(\frac{\pi v}{L} t\right)=y_{0} \sin \Omega t$, where $\Omega=\pi v / L$.
Applying Lagrange's equations:

$$
\begin{aligned}
m \ddot{x}+c \dot{x}+k x & =m g+c \dot{y}+k y \\
& =m g+c \Omega y_{0} \cos \Omega t+k y_{0} \sin \Omega t \\
& =m g+k y_{0} \sqrt{1+\left(2 \zeta \frac{\Omega}{\omega_{n}}\right)^{2}} \sin (\Omega t+\psi) \\
& =m g+f_{0} \sin (\Omega t+\psi)
\end{aligned}
$$

where $\zeta=c / 2 \sqrt{k m}, \omega_{n}=\sqrt{k / m}$ and:

$$
f_{0}=k y_{0} \sqrt{1+\left(2 \zeta \frac{\Omega}{\omega_{n}}\right)^{2}}
$$

Let $r(t)=x(t)-m g / k$. With this, the EOM becomes:

$$
m \ddot{r}+c \dot{r}+k r=f_{0} \sin (\Omega t+\psi)
$$

Using results from lecture:

$$
r_{P}(t)=R(\Omega) \sin (\Omega t+\psi-\phi)
$$

where:

$$
R(\Omega)=\frac{f_{0} / k}{\sqrt{\left[1-\left(\frac{\Omega}{\omega_{n}}\right)^{2}\right]^{2}+\left[2 \zeta \frac{\Omega}{\omega_{n}}\right]^{2}}}=\frac{\sqrt{1+\left(2 \zeta \frac{\Omega}{\omega_{n}}\right)^{2}}}{\sqrt{\left[1-\left(\frac{\Omega}{\omega_{n}}\right)^{2}\right]^{2}+\left[2 \zeta \frac{\Omega}{\omega_{n}}\right]^{2}}} y_{0}
$$

For the hand sketch, you need to clearly identify the following:

- As $\Omega \rightarrow 0, R \rightarrow y_{0}$
- As $\Omega \rightarrow \infty, R \rightarrow 0$
- For $\Omega=\omega_{n}, R \rightarrow \infty$ for $\zeta=0$
- When $\Omega=\sqrt{2} \sqrt{k / m}, R=y_{0}$

The oscillatory portion of the force on A is given by:

$$
\begin{aligned}
F_{P}(t) & =c \dot{r}_{P}(t)+r_{P}(t) \\
& =c \Omega R(\Omega) \cos (\Omega t+\psi-\phi)+k R(\Omega) \sin (\Omega t+\psi-\phi) \\
& =\sqrt{(c \Omega)^{2}+k^{2}} R(\Omega) \sin (\Omega t+\psi-\phi-\beta) \\
& =k \sqrt{1+\left(2 \zeta \frac{\Omega}{\omega_{n}}\right)^{2}} R(\Omega) \sin (\Omega t+\psi-\phi-\beta) \\
& =k y_{0} \frac{1+\left(2 \zeta \frac{\Omega}{\omega_{n}}\right)^{2}}{\sqrt{\left[1-\left(\frac{\Omega}{\omega_{n}}\right)^{2}\right]^{2}+\left[2 \zeta \frac{\Omega}{\omega_{n}}\right]^{2}}} \sin (\Omega t+\psi-\phi-\beta) \\
& =\left|F_{P}\right| \sin (\Omega t+\psi-\phi-\beta)
\end{aligned}
$$

Identify the following in your plots:

- As $\Omega \rightarrow 0,\left|F_{P}\right| \rightarrow k y_{0}$
- As $\Omega \rightarrow \infty,\left|F_{P}\right| \rightarrow 4 \zeta^{2} k y_{0}$
- For $\Omega=\omega_{n},\left|F_{P}\right| \rightarrow \infty$ for $\zeta=0$
- When $\Omega=\sqrt{2} \sqrt{k / m},\left|F_{P}\right|=k y_{0} \sqrt{1+8 \zeta^{2}}$

```
Matlab code:
clear
W=linspace(0,5,2000);nW=length(W);
zz=[0.1,0.2,0.4,1];Nz=length(zz);
for jj=1:Nz
    R=sqrt((1+(2*zz(jj)*W).^2)./((1-W.^^2).^2+(2*zz(jj)*W).^2));
    F=sqrt(1+(2*zz(jj)*W).^2).*R;
    figure(1)
    plot(W,R,'r'),hold on
    axis([0,3,0,5])
    xlabel('IOmega /sqrt(k/m)')
    ylabel('|R|/y_0')
    figure(2)
    plot(W,F,'r'),hold on
    axis([0,3,0,5])
    xlabel('IOmega /sqrt(k/m)')
    ylabel('IF|/ky_0')
end
figure(1), hold off
figure(2), hold off
```


