Example A2.20

Given: Consider the two-DOF system shown below whose motion is to be described by the absolute generalized coordinates x_{1} and x_{2}.

Find: For this problem:
a) Determine the natural frequencies and modal vectors for the system.
b) Determine the beat period of response for the system corresponding to $\alpha \ll 1$.

$$
\begin{aligned}
& T=\frac{1}{2} m \dot{x}_{1}^{2}+\frac{1}{2}(2 m) \dot{x}_{2}^{2} \\
& V=\frac{1}{2} k x_{1}^{2}+\frac{1}{2}(\alpha k)\left(x_{2}-x,\right)^{2}+\frac{1}{2}(2 k) x_{2}^{2} \\
& \therefore[M]\left[\begin{array}{cc}
m & 0 \\
0 & 2 m
\end{array}\right] ;[k]=\left[\begin{array}{cc}
R+\alpha k & -\alpha k \\
-\alpha R & 2 k+\alpha k
\end{array}\right]
\end{aligned}
$$

EOM: $[M] \ddot{\vec{x}}+[K] \vec{x}=\overrightarrow{0}$
Socx : $\vec{x}(t)=\overrightarrow{\bar{x}} e^{i \omega t} \Rightarrow$

$$
\left[-\omega^{2}[M+[k]] \stackrel{\rightharpoonup}{\mathbb{}}=\stackrel{\rightharpoonup}{0}\right.
$$

For $\overrightarrow{\bar{x}} \neq \overrightarrow{0} \Rightarrow$

$$
\begin{aligned}
0 & =\operatorname{det}\left[-\omega^{2}[M]+[k]\right] \\
& =\left[\begin{array}{cc}
-m \omega^{2}+k+\alpha k & -\alpha k \\
-\alpha k & -2 m w^{2}+2 k+\alpha k
\end{array}\right]
\end{aligned}
$$

$$
\left.\begin{array}{rl}
= & {\left[-m \omega^{2}+(1+\alpha) k\left[-2 m \omega^{2}+(2+\alpha) k\right]\right.} \\
& -(\alpha k)^{2}
\end{array}\right] \begin{aligned}
&-2 m^{2} \omega^{4}-(4+3 \alpha) m k \omega^{2} \\
&\left.+\frac{\left[(1+\alpha)(2+\alpha)-\alpha^{2}\right]}{2+3 \alpha}\right] R^{2} \\
& \therefore \omega_{1,2}^{2}=\frac{(4+3 \alpha) \pm \sqrt{(4+3 \alpha)^{2}-(4 \gamma 2)(2+3 \alpha)} \frac{k}{m}}{(2)(2)} \\
&=\left[\frac{(4+3 \alpha) \pm 3 \alpha]}{4} \frac{k}{m}\right. \\
&=\frac{k}{m},\left(1+\frac{3}{2} \alpha\right) \frac{R}{m} \\
& \omega_{1}=\sqrt{\frac{R}{m}} \\
& \omega_{2}=\sqrt{1+\frac{3}{2} \alpha} \sqrt{\frac{k}{m}}
\end{aligned}
$$

Modal vectors

$$
\left[\begin{array}{cc}
-m \omega^{2}+(1+\alpha) k & -\alpha R \\
-\alpha R & -2 m \omega^{2}+(2+\alpha) R
\end{array}\right]\left\{\begin{array}{l}
Z_{1} \\
Z_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

Using $1^{\text {st }}$ equation:

$$
\left(\frac{Z_{2}}{Z_{1}}\right)^{(j)}=\frac{(1+\alpha) R-m w_{i}^{2}}{\alpha R}=\frac{1+\alpha-\frac{m}{R} w_{i}^{2}}{\alpha}
$$

Let $\mathbb{X}_{1}^{(\hat{1})}=1$ for both modes. \Rightarrow

$$
\vec{x}^{(n)}=\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} ; \overrightarrow{\bar{x}}^{(2)}=\left\{\begin{array}{c}
1 \\
-\frac{1}{2}
\end{array}\right\}
$$

For small α :

$$
\begin{aligned}
w_{2} & =\sqrt{1+\frac{3}{2} \alpha} \sqrt{\frac{p}{m}} \\
& \cong\left(1+\frac{3}{4} \alpha+\ldots\right) \sqrt{\frac{p}{m}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad \frac{w_{2}-w_{1}}{2} & =\frac{\left(1+\frac{3}{4} \alpha\right) \sqrt{\frac{p}{m}}-\sqrt{\frac{p}{m}}}{2}=\frac{3}{8} \alpha \sqrt{\frac{p}{m}} \\
\frac{w_{2}+w_{1}}{2} & \approx w_{1}=\sqrt{\frac{p}{m}}
\end{aligned}
$$

Response goes as:

$$
\begin{aligned}
x(t) & \approx \cos \left(\frac{\omega_{2}-\omega_{1}}{2}\right) t \cos \left(\frac{\omega_{1}+\omega_{2}}{2}\right) t \\
& =\cos \left(\frac{3}{2} \alpha \sqrt{\frac{R}{n}} t\right) \cos \sqrt{\frac{R}{n}} t
\end{aligned}
$$

$x(4)$

$$
\begin{aligned}
& T_{\text {tax }}=\frac{\pi}{\frac{3}{2} \alpha \sqrt{\frac{m}{m}}}=\frac{2}{3} \frac{\pi}{\alpha} \sqrt{\frac{m}{R}}
\end{aligned}
$$

