Example A1.10

Given: The system shown is made of bodies 1,2 and 3 , with each body having a mass of m. Body 1 is constrained to move along a smooth horizontal floor. Body 2 is constrained to move within a vertical slot in body 1. Body 3 (a thin, homogeneous bar) is pinned to body 2 at its end A. The coordinates x_{1}, x_{2} and θ are used to describe the position and orientation of the bodies in the system. x_{1} is an absolute coordinate, x_{2} describes the motion of 2 relative to 1 , and θ measures the rotation of body 3 from its downward orientation.

Find: Use Lagrange?s equations to derive the EOMs for this system in terms of the coordinates x_{1}, x_{2} and θ.

SOLUTION

$$
\begin{aligned}
& T=\frac{1}{2} m v_{1}^{2}+\frac{1}{2} m v_{2}^{2}+\frac{1}{2} m v_{G}^{2}+\frac{1}{2} I_{G} \dot{\theta}^{2} \text { where } I_{G}=\frac{1}{12} m L^{2} \\
& U=\frac{1}{2} k x_{1}^{2}+\frac{1}{2} k x_{2}^{2}-m g \frac{L}{2} \cos \theta \\
& R=\frac{1}{2} c \dot{x}_{1}^{2}+\frac{1}{2} c \dot{x}_{2}^{2} \\
& d W=(F \hat{i}) \cdot d \vec{r}_{B}
\end{aligned}
$$

Kinematics

$$
\begin{aligned}
\vec{v}_{1} & =\dot{x}_{1} \hat{i} \\
\vec{v}_{2} & =\vec{v}_{1}+\vec{v}_{2 / 1}=\dot{x}_{1} \hat{i}-\dot{x}_{2} \hat{j} \\
\vec{v}_{G} & =\vec{v}_{2}+\vec{v}_{G / A}=\dot{x}_{1} \hat{i}-\dot{x}_{2} \hat{j}+(\dot{\theta} \hat{k}) \times\left(\frac{L}{2} \sin \theta \hat{i}-\frac{L}{2} \cos \theta \hat{j}\right) \\
& =\left(\dot{x}_{1}+\frac{L}{2} \cos \theta \dot{\theta}\right) \hat{i}+\left(-\dot{x}_{2}+\frac{L}{2} \sin \theta \dot{\theta}\right) \hat{j}
\end{aligned}
$$

$$
\begin{aligned}
\vec{r}_{B} & =\vec{r}_{A}+\vec{r}_{B / A}=\left(x_{1} \hat{i}-x_{2} \hat{j}\right)+(L \sin \theta \hat{i}-L \cos \theta \hat{j}) \\
& =\left(x_{1}+L \sin \theta\right) \hat{i}+\left(-x_{2}-L \cos \theta\right) \hat{j} \Rightarrow \\
d \vec{r}_{B} & =\left(d x_{1}+L \cos \theta d \theta\right) \hat{i}+\left(-d x_{2}+L \sin \theta d \theta\right) \hat{j}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
T= & \frac{1}{2} m \dot{x}_{1}^{2}+\frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}\right)+\frac{1}{2} m\left[\left(\dot{x}_{1}+\frac{L}{2} \cos \theta \dot{\theta}\right)^{2}+\left(-\dot{x}_{2}+\frac{L}{2} \sin \theta \dot{\theta}\right)^{2}\right]+\frac{1}{2} I_{G} \dot{\theta}^{2} \\
= & \frac{1}{2}(3 m) \dot{x}_{1}^{2}+\frac{1}{2}(2 m) \dot{x}_{2}^{2}+\frac{1}{2} m \frac{L^{2}}{4}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \dot{\theta}^{2}+\frac{1}{2}\left(m \frac{L}{2} \cos \theta\right) \dot{x}_{1} \dot{\theta} \\
& +\frac{1}{2}\left(-m \frac{L}{2} \sin \theta\right) \dot{x}_{2} \dot{\theta}+\frac{1}{2}\left(\frac{1}{12} m L^{2}\right) \dot{\theta}^{2} \\
= & \frac{1}{2}(3 m) \dot{x}_{1}^{2}+\frac{1}{2}(2 m) \dot{x}_{2}^{2}+\frac{1}{2}\left(m \frac{L^{2}}{3}\right) \dot{\theta}^{2}+\left(m \frac{L}{4} \cos \theta\right) \dot{x}_{1} \dot{\theta}+\left(-m \frac{L}{4} \sin \theta\right) \dot{x}_{2} \dot{\theta} \\
d W= & (F \hat{i}) \cdot\left[\left(d x_{1}+L \cos \theta d \theta\right) \hat{i}+\left(-d x_{2}+L \sin \theta d \theta\right) \hat{j}\right] \\
= & (F) d x_{1}+(F L \cos \theta) d \theta=Q_{x_{1}} d x_{1}+Q_{\theta} d \theta
\end{aligned}
$$

Applying Lagrange's equations:

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{x}_{1}}\right) & =\frac{d}{d t}\left[3 m \dot{x}_{1}+m \frac{L}{4} \cos \theta \dot{\theta}\right]=3 m \ddot{x}_{1}+m \frac{L}{4} \cos \theta \ddot{\theta}-m \frac{L}{4} \sin \theta \dot{\theta}^{2} \\
\frac{\partial T}{\partial x_{1}} & =0 \\
\frac{\partial U}{\partial x_{1}} & =k x_{1} \\
\frac{\partial R}{\partial \dot{x}_{1}} & =c \dot{x}_{1} \\
Q_{x_{1}} & =F \\
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{x}_{2}}\right) & =\frac{d}{d t}\left[2 m \dot{x}_{2}-m \frac{L}{4} \sin \theta \dot{\theta}\right]=2 m \ddot{x}_{2}-m \frac{L}{4} \sin \theta \ddot{\theta}-m \frac{L}{4} \cos \theta \dot{\theta}^{2} \\
\frac{\partial T}{\partial x_{2}} & =0 \\
\frac{\partial U}{\partial x_{2}} & =k x_{2} \\
\frac{\partial R}{\partial \dot{x}_{2}} & =c \dot{x}_{2} \\
Q_{x_{2}} & =0
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\theta}}\right) & =\frac{d}{d t}\left[\frac{1}{3} m L^{2} \dot{\theta}+m \frac{L}{4} \cos \theta \dot{x}_{1}-m \frac{L}{4} \sin \theta \dot{x}_{2}\right] \\
& =\frac{1}{3} m L^{2} \ddot{\theta}+m \frac{L}{4} \cos \theta \ddot{x}_{1}-m \frac{L}{4} \sin \theta \ddot{x}_{2}-m \frac{L}{4} \sin \theta \dot{x}_{1} \dot{\theta}-m \frac{L}{4} \cos \theta \dot{x}_{2} \dot{\theta} \\
\frac{\partial T}{\partial \theta} & =-m \frac{L}{4} \sin \theta \dot{\dot{x}_{1} \dot{\theta}}-m \frac{L}{4} \cos \theta \dot{x}_{2} \dot{\theta} \\
\frac{\partial U}{\partial \theta} & =m g \frac{L}{2} \sin \theta \\
\frac{\partial R}{\partial \dot{\theta}} & =0 \\
Q_{\theta} & =F L \cos \theta
\end{aligned}
$$

