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Example A1.10

Given: The system shown is made of bodies 1, 2 and 3, with each body having a mass of m. Body
1 is constrained to move along a smooth horizontal floor. Body 2 is constrained to move within
a vertical slot in body 1. Body 3 (a thin, homogeneous bar) is pinned to body 2 at its end A.
The coordinates x1, x2 and ✓ are used to describe the position and orientation of the bodies in the
system. x1 is an absolute coordinate, x2 describes the motion of 2 relative to 1, and ✓ measures
the rotation of body 3 from its downward orientation.

Find: Use Lagrange?s equations to derive the EOMs for this system in terms of the coordinates
x1, x2 and ✓.
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ME 563 – Fall 2014 SOLUTION 
Homework Problem 2.4 
 
The system shown is made of bodies 1, 2 and 3, with each body having a mass of m. 
Body 1 is constrained to move along a smooth horizontal floor. Body 2 is constrained to 
move within a vertical slot in body 1. Body 3 (a thin, homogeneous bar) is pinned to 
body 2 at its end A. The coordinates x1 , x2  and θ  are used to describe the position and 
orientation of the bodies in the system. x1  is an absolute coordinate, x2  describes the 
motion of 2 relative to 1, and θ  measures the rotation of body 3 from its downward 
orientation. 

Use Lagrange’s equations to derive the EOMs for this system in terms of the coordinates 
x1 , x2  and θ . 
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Kinematics 
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rB = rA + rB /A = x1î − x2 ĵ( ) + Lsinθî − Lcosθ ĵ( )
= x1 + Lsinθ( ) î + −x2 − Lcosθ( ) ĵ ⇒

 

  d
rB = dx1 + Lcosθdθ( ) î + −dx2 + Lsinθdθ( ) ĵ  

Therefore, 
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dW = (Fî )i dx1 + Lcosθdθ( ) î + −dx2 + Lsinθdθ( ) ĵ⎡⎣ ⎤⎦
= (F)dx1 + (FLcosθ)dθ = Qx1dx1 +Qθdθ

 

Applying Lagrange’s equations: 
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