Example A1.9

Given: Three blocks, each of mass m, are able to move along a smooth horizontal surface. The blocks are interconnected by springs, as shown in the figure. Identical forces f act to the right on each of the blocks. Let x_{1} represent the absolute motion of block $1, x_{2}$ represent the motion of 2 relative to 1 and x_{3} represent the motion of 3 relative to 2 .

Find: Use Lagrange?s equations to derive the EOMs for this three-DOF system in terms of the generalized coordinates x_{1}, x_{2} and x_{3}.

SOLUTION

$$
\begin{aligned}
& T= \frac{1}{2} m \dot{x}_{1}^{2}+\frac{1}{2} m\left(\dot{x}_{1}+\dot{x}_{2}\right)^{2}+\frac{1}{2} m\left(\dot{x}_{1}+\dot{x}_{2}+\dot{x}_{3}\right)^{2} \\
&= \frac{1}{2} m \dot{x}_{1}^{2}+\frac{1}{2} m\left(\dot{x}_{1}^{2}+2 \dot{x}_{1} \dot{x}_{2}+\dot{x}_{2}^{2}\right) \\
&+\frac{1}{2} m\left[\dot{x}_{1}^{2}+2 \dot{x}_{1}\left(\dot{x}_{2}+\dot{x}_{3}\right)+\dot{x}_{2}^{2}+2 \dot{x}_{2} \dot{x}_{3}+\dot{x}_{3}^{2}\right] \\
&= \frac{1}{2}(3 m) \dot{x}_{1}^{2}+\frac{1}{2}(2 m) \dot{x}_{2}^{2}+\frac{1}{2}(m) \dot{x}_{3}^{2}+\frac{1}{2}(4 m) \dot{x}_{1} \dot{x}_{2}+\frac{1}{2}(2 m) \dot{x}_{1} \dot{x}_{3}+\frac{1}{2}(2 m) \dot{x}_{2} \dot{x}_{3} \\
&= \frac{1}{2}\left(m_{11}\right) \dot{x}_{1}^{2}+\frac{1}{2}\left(m_{22}\right) \dot{x}_{2}^{2}+\frac{1}{2}\left(m_{33}\right) \dot{x}_{3}^{2}+\frac{1}{2}\left(m_{12}+m_{21}\right) \dot{x}_{1} \dot{x}_{2} \\
& \quad+\frac{1}{2}\left(m_{13}+m_{31}\right) \dot{x}_{1} \dot{x}_{3}+\frac{1}{2}\left(m_{23}+m_{32}\right) \dot{x}_{2} \dot{x}_{3} \\
& \begin{aligned}
U= & \frac{1}{2} k x_{1}^{2}+\frac{1}{2} k x_{2}^{2}+\frac{1}{2} k x_{3}^{2}+\frac{1}{2} k\left(x_{2}+x_{3}\right)^{2}+\frac{1}{2} k\left(x_{1}+x_{2}+x_{3}\right)^{2} \\
d W= & (f \hat{i}) \cdot d \vec{r}_{1}+(f \hat{i}) \cdot d \vec{r}_{2}+(f \hat{i}) \cdot d \vec{r}_{3} \\
= & (f \hat{i}) \cdot d\left(x_{1} \hat{i}\right)+(f \hat{i}) \cdot d\left(x_{1}+x_{2}\right) \hat{i}+(f \hat{i}) \cdot d\left(x_{1}+x_{2}+x_{3}\right) \hat{i} \\
= & (3 f) d x_{1}+(2 f) d x_{2}+(f) d x_{3}=Q_{1} d x_{1}+Q_{2} d x_{2}+Q_{3} d x_{3}
\end{aligned}
\end{aligned}
$$

Applying Lagrange's equations gives:

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{x}_{1}}\right)-\frac{\partial T}{\partial x_{1}}+\frac{\partial U}{\partial x_{1}}=0 \Rightarrow 3 m \ddot{x}_{1}+2 m \ddot{x}_{2}+m \ddot{x}_{3}+2 k x_{1}+k x_{2}+k x_{3}=3 f \\
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{x}_{2}}\right)-\frac{\partial T}{\partial x_{2}}+\frac{\partial U}{\partial x_{2}}=0 \Rightarrow 2 m \ddot{x}_{1}+2 m \ddot{x}_{2}+m \ddot{x}_{3}+k x_{1}+3 k x_{2}+2 k x_{3}=2 f \\
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{x}_{3}}\right)-\frac{\partial T}{\partial x_{3}}+\frac{\partial U}{\partial x_{3}}=0 \Rightarrow m \ddot{x}_{1}+m \ddot{x}_{2}+m \ddot{x}_{3}+k x_{1}+2 k x_{2}+3 k x_{3}=f
\end{aligned}
$$

In matrix form, these EOMs become:

$$
\left[\begin{array}{ccc}
3 m & 2 m & m \\
2 m & 2 m & m \\
m & m & m
\end{array}\right]\left\{\begin{array}{c}
\ddot{x}_{1} \\
\ddot{x}_{2} \\
\ddot{x}_{3}
\end{array}\right\}+\left[\begin{array}{ccc}
2 k & k & k \\
k & 3 k & 2 k \\
k & 2 k & 3 k
\end{array}\right]\left\{\begin{array}{c}
\ddot{x}_{1} \\
\ddot{x}_{2} \\
\ddot{x}_{3}
\end{array}\right\}=\left\{\begin{array}{c}
3 f \\
2 f \\
f
\end{array}\right\}
$$

Alternately, we can use the explicit description of our mass, damping and stiffness matrices (from the section of linearization of EOMs):

$$
[M]=\left[\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right] \quad[K]=\left[\frac{\partial^{2} U}{\partial \dot{q}_{i} \partial \dot{q}_{j}}\right]_{\overrightarrow{0}}
$$

to arrive at the same results for the mass and stiffness matrices.

