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Example A1.9

Given: Three blocks, each of mass m, are able to move along a smooth horizontal surface. The
blocks are interconnected by springs, as shown in the figure. Identical forces f act to the right on
each of the blocks. Let x1represent the absolute motion of block 1, x2 represent the motion of 2
relative to 1 and x3 represent the motion of 3 relative to 2.

Find: Use Lagrange?s equations to derive the EOMs for this three-DOF system in terms of the
generalized coordinates x1, x2 and x3.
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ME 563 – Fall 2014 SOLUTION 
Homework Problem 2.3 
 
Three blocks, each of mass m, are able to move along a smooth horizontal surface. The 
blocks are interconnected by springs, as shown in the figure. Identical forces f act to the 
right on each of the blocks. Let x1  represent the absolute motion of block 1, x2  represent 
the motion of 2 relative to 1 and x3  represent the motion of 3 relative to 2. 

Use Lagrange’s equations to derive the EOMs for this three-DOF system in terms of the 
generalized coordinates x1 , x2  and x3 . 
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dW = ( f î )idr1 + ( f î )id
r2 + ( f î )id

r3
= ( f î )id(x1î ) + ( f î )id(x1 + x2 )î + ( f î )id(x1 + x2 + x3)î
= (3 f )dx1 + (2 f )dx2 + ( f )dx3 = Q1dx1 +Q2dx2 +Q3dx3

 

Applying Lagrange’s equations gives: 
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In matrix form, these EOMs become: 
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Alternately, we can use the explicit description of our mass, damping and stiffness 
matrices (from the section of linearization of EOMs): 
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to arrive at the same results for the mass and stiffness matrices. 


