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Example A1.8

Given: A homogeneous disk of massm and outer radius R is supported by an in-parallel connection
of a spring (of sti↵ness k) and of a dashpot (of damping coe�cient c). An inextensible cable is
wrapped around the outer perimeter of the disk. One end of the cable is attached to a second,
in-parallel spring/dashpot connection, with the other end attached to block C (of mass m). Let x
represent the motion of the massless connector B, and � the rotation of the disk. Let � = 0 when
the springs are unstretched. Assume that the cable does not slip on the disk. All motion of the
system occurs in a horizontal plane.

Find: Use Lagrange‘s equations to derive the EOM for this single-DOF system in terms of the
generalized coordinate �.

 k
 c

 k
 c

m

m

x

A

B

O

R

φ

C



ME 563 – Fall 2014 SOLUTION 
Homework Problem 2.2 
 
A homogeneous disk of mass m and outer radius R is supported by an in-parallel 
connection of a spring (of stiffness k) and of a dashpot (of damping coefficient c). An 
inextensible cable is wrapped around the outer perimeter of the disk. One end of the cable 
is attached to a second, in-parallel spring/dashpot connection, with the other end attached 
to block C (of mass m). Let x represent the motion of the massless connector B, and φ  
the rotation of the disk. Let x = φ = 0  when the springs are unstretched. Assume that the 
cable does not slip on the disk. All motion of the system occurs in a horizontal plane. 
Use Lagrange’s equations to derive the EOM for this two-DOF system in terms of the 
generalized coordinates x and φ . 
 

 
 
SOLUTION 

 
 
T = Tdisk + Tblock =
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mvO
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IO φ
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1
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mvC

2  

 U =
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kΔA
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1
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kΔB

2  
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1
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c ΔA
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1
2
c ΔB

2  

Kinematics 
Let C’ be the point on the right side of the disk from where the cable comes away: 

 

 

vC ' =
vO +


ω × rC /O

= − xĵ + − φk̂( ) × (Rî )
= − x + R φ( ) ĵ = vC

 

  ΔA = x − Rφ ⇒ ΔA = x − R φ  
  ΔB = x ⇒ ΔB = x  
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Therefore, we have: 

 

 

T =
1
2
mx2 +

1
2
1
2
mR2⎛

⎝⎜
⎞
⎠⎟
φ2 + 1

2
m x + R φ( )2

=
1
2
(2m) x2 + 1

2
3
2
mR2⎛

⎝⎜
⎞
⎠⎟
φ2 + 1

2
(2mR) x φ

=
1
2
m11 x

2 +
1
2
m22 φ

2 +
1
2
(m12 + m21) x φ

 

 U =
1
2
k x − Rφ( )2 + 1

2
kx2 =

1
2
(2k)x2 + 1

2
(kR2 )φ2 − (kR)xφ  

 
 
R =

1
2
c x − R φ( )2 + 1

2
cx2 =

1
2
(2c) x2 + 1

2
(cR2 ) φ2 − (cR) x φ  

Applying Lagrange’s equations: 

 
 

d
dt

∂T
∂x

⎛
⎝⎜

⎞
⎠⎟ =

d
dt
2mx + mR φ[ ] = 2mx + mRφ  

 
∂T
∂x

= 0  

 
∂U
∂x

= 2kx − kRφ  

 
 

∂R
∂x

= 2cx − cR φ  

and: 

 
 

d
dt

∂T
∂ φ

⎛
⎝⎜

⎞
⎠⎟
=
d
dt

mRx +
3
2
mR2 φ⎡

⎣⎢
⎤
⎦⎥
= mRx +

3
2
mR2φ  

 
∂T
∂φ

= 0  

 
∂U
∂φ

= −kRx + kR2φ  

 
 

∂R
∂ φ

= −kRx + kR2 φ  

Together, these give the following two EOMs: 
  2mx + mRφ + 2cx − cR φ + 2kx − kRφ = 0  

 
 
mRx +

3
2
mR2φ − kRx + kR2 φ − kRx + kR2φ = 0  

or, in matrix form: 

 
 

2m mR
mR 3mR2 / 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x
φ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

2c −cR
−cR cR2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x
φ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+

2k −kR
−kR kR2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

x
φ

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0

0
⎧
⎨
⎩

⎫
⎬
⎭

 

Alternately, we can use the explicit description of our mass, damping and stiffness 
matrices (from the section of linearization of EOMs): 



 [M ] =
m11 m12
m21 m22

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

2m mR
mR 3mR2 / 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 (see expression for KE above) 

 

 
C[ ] = ∂2R

∂ qi∂ qj

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

=
2c −cR

−cR cR2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 

 
K[ ] = ∂2U

∂ qi∂ qj

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥0

=
2k −kR

−kR kR2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

These agree with the above derivation that directly uses Lagrange’s equations, as one 
would expect.


