Example A1.8

Given: A homogeneous disk of mass m and outer radius R is supported by an in-parallel connection of a spring (of stiffness k) and of a dashpot (of damping coefficient c). An inextensible cable is wrapped around the outer perimeter of the disk. One end of the cable is attached to a second, in-parallel spring/dashpot connection, with the other end attached to block C (of mass m). Let x represent the motion of the massless connector B , and ϕ the rotation of the disk. Let $\phi=0$ when the springs are unstretched. Assume that the cable does not slip on the disk. All motion of the system occurs in a horizontal plane.

Find: Use Lagrange's equations to derive the EOM for this single-DOF system in terms of the generalized coordinate ϕ.

SOLUTION

$$
\begin{aligned}
T & =T_{\text {disk }}+T_{\text {block }}=\frac{1}{2} m v_{O}^{2}+\frac{1}{2} I_{O} \dot{\phi}^{2}+\frac{1}{2} m v_{C}^{2} \\
U & =\frac{1}{2} k \Delta_{A}^{2}+\frac{1}{2} k \Delta_{B}^{2} \\
R & =\frac{1}{2} c \dot{\Delta}_{A}^{2}+\frac{1}{2} c \dot{\Delta}_{B}^{2}
\end{aligned}
$$

Kinematics

Let C^{\prime} be the point on the right side of the disk from where the cable comes away:

$$
\begin{aligned}
\vec{v}_{C^{\prime}} & =\vec{v}_{O}+\vec{\omega} \times \vec{r}_{C / O} \\
& =-\dot{x j}+(-\dot{\phi} \hat{k}) \times(R \hat{i}) \\
& =-(\dot{x}+R \dot{\phi}) \hat{j}=\vec{v}_{C} \\
\Delta_{A} & =x-R \phi \Rightarrow \dot{\Delta}_{A}=\dot{x}-R \dot{\phi} \\
\Delta_{B} & =x \Rightarrow \dot{\Delta}_{B}=\dot{x}
\end{aligned}
$$

Therefore, we have:

$$
\begin{aligned}
T & =\frac{1}{2} m \dot{x}^{2}+\frac{1}{2}\left(\frac{1}{2} m R^{2}\right) \dot{\phi}^{2}+\frac{1}{2} m(\dot{x}+R \dot{\phi})^{2} \\
& =\frac{1}{2}(2 m) \dot{x}^{2}+\frac{1}{2}\left(\frac{3}{2} m R^{2}\right) \dot{\phi}^{2}+\frac{1}{2}(2 m R) \dot{x} \dot{\phi} \\
& =\frac{1}{2} m_{11} \dot{x}^{2}+\frac{1}{2} m_{22} \dot{\phi}^{2}+\frac{1}{2}\left(m_{12}+m_{21}\right) \dot{x} \dot{\phi} \\
U & =\frac{1}{2} k(x-R \phi)^{2}+\frac{1}{2} k x^{2}=\frac{1}{2}(2 k) x^{2}+\frac{1}{2}\left(k R^{2}\right) \phi^{2}-(k R) x \phi \\
R & =\frac{1}{2} c(\dot{x}-R \dot{\phi})^{2}+\frac{1}{2} c \dot{x}^{2}=\frac{1}{2}(2 c) \dot{x}^{2}+\frac{1}{2}\left(c R^{2}\right) \dot{\phi}^{2}-(c R) \dot{x} \dot{\phi}
\end{aligned}
$$

Applying Lagrange's equations:

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{x}}\right)=\frac{d}{d t}[2 m \dot{x}+m R \dot{\phi}]=2 m \ddot{x}+m R \ddot{\phi} \\
& \frac{\partial T}{\partial x}=0 \\
& \frac{\partial U}{\partial x}=2 k x-k R \phi \\
& \frac{\partial R}{\partial \dot{x}}=2 c \dot{x}-c R \dot{\phi}
\end{aligned}
$$

and:

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\phi}}\right)=\frac{d}{d t}\left[m R \dot{x}+\frac{3}{2} m R^{2} \dot{\phi}\right]=m R \ddot{x}+\frac{3}{2} m R^{2} \ddot{\phi} \\
& \frac{\partial T}{\partial \phi}=0 \\
& \frac{\partial U}{\partial \phi}=-k R x+k R^{2} \phi \\
& \frac{\partial R}{\partial \dot{\phi}}=-k R \dot{x}+k R^{2} \dot{\phi}
\end{aligned}
$$

Together, these give the following two EOMs:

$$
\begin{aligned}
& 2 m \ddot{x}+m R \ddot{\phi}+2 c \dot{x}-c R \dot{\phi}+2 k x-k R \phi=0 \\
& m R \ddot{x}+\frac{3}{2} m R^{2} \ddot{\phi}-k R \dot{x}+k R^{2} \dot{\phi}-k R x+k R^{2} \phi=0
\end{aligned}
$$

or, in matrix form:

$$
\left[\begin{array}{cc}
2 m & m R \\
m R & 3 m R^{2} / 2
\end{array}\right]\left\{\begin{array}{l}
\ddot{x} \\
\ddot{\phi}
\end{array}\right\}+\left[\begin{array}{cc}
2 c & -c R \\
-c R & c R^{2}
\end{array}\right]\left\{\begin{array}{c}
\dot{x} \\
\dot{\phi}
\end{array}\right\}+\left[\begin{array}{cc}
2 k & -k R \\
-k R & k R^{2}
\end{array}\right]\left\{\begin{array}{l}
x \\
\phi
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

Alternately, we can use the explicit description of our mass, damping and stiffness matrices (from the section of linearization of EOMs):

$$
\begin{aligned}
& {[M]=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]=\left[\begin{array}{cc}
2 m & m R \\
m R & 3 m R^{2} / 2
\end{array}\right] \text { (see expression for KE above) }} \\
& {[C]=\left[\frac{\partial^{2} R}{\partial \dot{q}_{i} \partial \dot{q}_{j}}\right]_{\overrightarrow{0}}=\left[\begin{array}{cc}
2 c & -c R \\
-c R & c R^{2}
\end{array}\right]} \\
& {[K]=\left[\frac{\partial^{2} U}{\partial \dot{q}_{i} \partial \dot{q}_{j}}\right]_{\overrightarrow{0}}=\left[\begin{array}{rr}
2 k & -k R \\
-k R & k R^{2}
\end{array}\right]}
\end{aligned}
$$

These agree with the above derivation that directly uses Lagrange's equations, as one would expect.

