Example A1.6

Given: Consider the three-degree-of-freedom system shown below made up of three particles A, B and C, each of mass m with the system moving within a horizontal plane. Let x_{1} describe the absolute motion of particle A, x_{2} describe the motion of particle B relative to A and x_{3} describe the motion of particle C relative to B . All springs are unstretched when $x_{1}=x_{2}=x_{3}=0$. Assume all surfaces to be smooth.

Find: For this problem:
a) Determine the generalized mass coefficients, $m_{i j}$, for the system corresponding to the generalized coordinates x_{1}, x_{2} and x_{3}.
b) Determine the generalized force, Q_{i}, for the system corresponding to the generalized coordinates x_{1}, x_{2} and x_{3}.

Body A: $\vec{r}_{1}=x_{1} \hat{i} \Rightarrow d \vec{r}_{1}=d x_{1} \hat{i} \Rightarrow \dot{\vec{r}}_{1}=\dot{x}_{1} \hat{i}$
Body B: $\quad \vec{r}_{2}=x_{1} \hat{i}+x_{2} \hat{j} \Rightarrow d \vec{r}_{2}=d x_{1} \hat{i}+d x_{2} \hat{j} \Rightarrow \dot{\vec{r}}_{2}=\dot{x}_{1} \hat{i}+\dot{x}_{2} \hat{j}$
Body C: $\quad \vec{r}_{3}=\left(x_{1}+x_{3}\right) \hat{i}+x_{2} \hat{j} \Rightarrow d \vec{r}_{2}=\left(d x_{1}+d x_{3}\right) \hat{i}+d x_{2} \hat{j} \Rightarrow \dot{\vec{r}}_{2}=\left(\dot{x}_{1}+\dot{x}_{3}\right) \hat{i}+\dot{x}_{2} \hat{j}$
From this, we can write:

$$
\begin{aligned}
T & =\frac{1}{2} m \dot{x}_{1}^{2}+\frac{1}{2} m\left(\dot{x}_{1}^{2}+\dot{x}_{2}^{2}\right)+\frac{1}{2} m\left[\left(\dot{x}_{1}+\dot{x}_{3}\right)^{2}+\dot{x}_{2}^{2}\right] \\
& =\frac{1}{2}(3 m) \dot{x}_{1}^{2}+\frac{1}{2}(2 m) \dot{x}_{2}^{2}+\frac{1}{2}(m) \dot{x}_{3}^{2}+\frac{1}{2}(2 m) \dot{x}_{1} \dot{x}_{3}
\end{aligned}
$$

From this, we have:

$$
\begin{aligned}
& m_{11}=3 m \\
& m_{22}=2 m \\
& m_{33}=m \\
& m_{12}=m_{21}=m_{23}=m_{32}=0 \\
& m_{13}=m_{31}=m
\end{aligned}
$$

Therefore,

$$
[m]=\left[\begin{array}{ccc}
3 m & 0 & m \\
0 & 2 m & 0 \\
m & 0 & m
\end{array}\right]
$$

Also, we have:

$$
d W=\vec{F} \cdot d \vec{r}_{3}=(F \hat{i}) \cdot d \vec{r}_{3}=F\left(d x_{1}+d x_{3}\right)
$$

Therefore:

$$
\begin{aligned}
& Q_{1}=Q_{3}=F \\
& Q_{2}=0
\end{aligned}
$$

