Example A1.4

Given: Consider the three-degree-of-freedom system shown below made up of three particles A, B and C , each of mass m with the system moving within a horizontal plane. Let x_{1} describe the absolute motion of particle A, x_{2} describe the motion of particle B relative to A and x_{3} describe the motion of particle C relative to B . All springs are unstretched when $x_{1}=x_{2}=x_{3}=0$. Assume all surfaces to be smooth.

Find: For this problem:
a) Draw individual free body diagrams of each particle.
b) Use the Newton-Euler formulation to derive the three differential equations of motion for the system. Your final equations should not include any forces of reaction.
c) Write the equations on motion derived in b) in matrix form. Identify the mass, damping and stiffness matrices in these equations

Free body diagrams:

Body A: $\sum F_{x}=-k x_{1}-c \dot{x}_{1}-N_{13}=m a_{1 x}=m \ddot{x}_{1} \Rightarrow N_{13}=-k x_{1}-c \dot{x}_{1}-m \ddot{x}_{1}$
Body B: $\sum F_{x}=k x_{3}+c \dot{x}_{3}+N_{13}=m a_{2 x}=m \ddot{x}_{1} \Rightarrow N_{13}=m \ddot{x}_{1}-k x_{3}-c \dot{x}_{3}$

$$
\begin{equation*}
\sum F_{y}=-k x_{2}-c \dot{x}_{2}+N_{23}=m a_{2 y}=m \ddot{x}_{2} \Rightarrow N_{23}=m \ddot{x}_{2}+k x_{2}+c \dot{x}_{2} \tag{2}
\end{equation*}
$$

Body C: $\sum F_{x}=-k x_{3}-c \dot{x}_{3}+F=m a_{3 x}=m\left(\ddot{x}_{1}+\ddot{x}_{3}\right) \Rightarrow m\left(\ddot{x}_{1}+\ddot{x}_{3}\right)+c \dot{x}_{3}+k x_{3}=F$

$$
\begin{equation*}
\sum F_{y}=-N_{23}=m a_{C y}=m \ddot{x}_{2} \tag{4}
\end{equation*}
$$

Equating equations (1) and (2):

$$
\begin{equation*}
-k x_{1}-c \dot{x}_{1}-m \ddot{x}_{1}=m \ddot{x}_{1}-k x_{3}-c \dot{x}_{3} \Rightarrow 2 m \ddot{x}_{1}+c \dot{x}_{1}-c \dot{x}_{3}+k x_{1}-k x_{3}=0 \tag{6}
\end{equation*}
$$

Combining equations (3) and (5):

$$
\begin{equation*}
m \ddot{x}_{2}+k x_{2}+c \dot{x}_{2}=-m \ddot{x}_{2} \Rightarrow 2 m \ddot{x}_{2}+k x_{2}+c \dot{x}_{2}=0 \tag{7}
\end{equation*}
$$

Equations (4), (6) and (7) are the three EOMs for the system. Writing these in matrix form gives:

$$
\begin{aligned}
{\left[\begin{array}{ccc}
2 m & 0 & 0 \\
0 & 2 m & 0 \\
m & 0 & m
\end{array}\right]\left\{\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2} \\
\ddot{x}_{3}
\end{array}\right\}+} & +\left[\begin{array}{ccc}
c & 0 & -c \\
0 & c & 0 \\
0 & 0 & c
\end{array}\right]\left\{\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right\} \\
& +\left[\begin{array}{ccc}
k & 0 & -k \\
0 & k & 0 \\
0 & 0 & k
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
F
\end{array}\right\}
\end{aligned}
$$

Note that the mass, damping and stiffness matrices are not symmetric.

