

Retrofit Potential for Indiana Coal-Fired Power Plants, Including Oxy-fuel

E. J. Miklaszewski, Dr. Lori Groven and Prof. Steven Son Department of Mechanical Engineering

Purdue University West Lafayette, IN 47907

- Clean Coal Options
- Oxy-fuel basics
- Economics of clean coal options
- Cite evaluation of potential retrofits
- Current funded work through CCTR
- Comments on current clean coal legislation

Clean Coal Options

Oxygen combustion (Oxy-fuel)

- Concentrated CO₂ in products
- Spend energy on generating oxygen to use instead of air leads to very little NO_x is produced and combustion products can be sequestered with water condenser and SO₂ removal

Amine (or others) scrubbing

- Extracts the CO₂ from the flue gas using a regenerable sorbent-catalyst such as momoethanolamine (or MEA)
- Spend energy on separating NO_x and CO_2 after burning fuel

Integrated Gasification Combined Cycle (IGCC)

- Also concentrates CO₂
- Attractive approach, but challenges include complexity of operation

Why use Oxy-Fuel?

Oxy-fuel is inherently designed for CCS and would not generally be used if sequestration is not required because of the added cost.

However, as carbon taxes rise, oxy-fuel quickly becomes an economically viable option.

What Does Oxy-Fuel Look Like?

The simplest oxy-fuel retrofit for a existing coal power plant is shown here.

Major components needed for an oxy-fuel retrofit are highlighted in red. These include:

- Air Separation Unit (ASU)
- Flue Gas Recirculation
- CO₂ Purification and Compression

However, one of the biggest problems with justifying an oxy-fuel retrofit is the overall loss in plant efficiency due to additional energy requirements.

What Changes Does an Oxy-Fuel **PURDUE** Retrofit Require?

Indiana Center for Coal Technology Research

Air Separation

Oxy-fuel's biggest problem is inefficient ASU!

- In some plants, in order to continuously run an oxy-fuel scenario, as much as 7400 tons/day of oxygen would be needed
- The largest single ASU can produce roughly 3500 tons/day of O_2
 - This can support a plant that produces approximately 200 MWe
- There are several commercial methods for large-scale oxygen production (both $\sim 200 \text{kWh/ton of O}_2$)
 - Vacuum Swing Absorption (VSA) ~ 90-94% O₂
 - Cryogenic separation ~ 99% O₂

Air Separation Comments

Air Separation is by far the largest consumer of energy in oxy-fuel operations. This leads to lower overall plant efficiency and makes oxy-fuel less attractive economically.

According to an engineering analysis of the basic functions of an ASU, current ASUs use 6x more energy than they need to!

An ASU capable of 300 tones of O_2 /day

Many demonstration scale oxy-fuel projects have used various improved heat recovery systems in an attempt to offset the decrease in plant efficiency.

- Many facilities capture additional rejected heat from the condensers to supplement power to the steam turbine
- Some facilities integrate the ASU, steam turbine and CO₂ compression systems which has been proven to lessen the overall power consumption

CO₂ Compression and Storage

- Oxy-fuel produces 80-95% CO₂ prior to capture
 - $\sim 3\% N_2$ from air leakage
 - Ar from the ASU, O₂ from oxygen rich burning
- Compression of flue gas is a relatively low energy requirement and optimization depends on the composition of the flue gas
- Sequestration options depend on location and may require further purification of flue gases
 - Enhanced Oil Recovery (EOR) requires CO₂ concentration >95% and O₂ <10ppm

Historical Progress of Oxy-fuel

Oxy-fuel Projects are growing Quickly!

Indiana Center for Coal Technology Research

Economic Case Study for Oxy-Fuel Retrofit from a Coal-Powered Power Plant

Indiana Center for Coal Technology Research

Capital Cost Estimates of Oxy-Fuel PURDUE

Oxy-fuel has lower capital costs when capturing large amounts of CO₂

- Three economic studies of capital costs of Amine Scrubbing Retrofit vs. O_2/CO_2 Retrofit of 300MWe, 400MWe and 450MWe facilities
- Amine scrubbing with 65% CO_2 removal vs. oxy-fuel with 74% CO_2 removal

CO₂ Capture Costs of Oxy-Fuel

Oxy-fuel is cheaper per ton of CO₂ avoided

- Three economic studies of capital costs of Amine Scrubbing Retrofit vs. O_2/CO_2 Retrofit of 300MWe, 400MWe and 450MWe facilities
- Amine scrubbing with 65% CO_2 removal vs. oxy-fuel with 74% CO_2 removal

Room for Improvement?

Indiana Center for Coal Technology Research

Summary of Other Economic Studie Surput on Oxy-fuel Retrofit

- Oxy-fuel retrofits for pulverized coal power plants are technically and economically feasible
 - Large Capital Investment
- Oxy-fuel is competitive for CO₂ sequestration when a substantial percent of CO₂ will be sequestered
- Retrofitted oxy-fuel power plants are more economical at smaller sizes (<200MWe)
 - At plant sizes larger than 200MWe, multiple ASUs may be required which will significantly increase the capital cost of the oxy-fuel retrofit
- Sensitivity analysis indicates that improvements in the ASU technology will have a significant impact on the overall cost of annual oxy-fuel costs

Cite evaluation for Oxy-fuel retrofit **PURDUE**

"Engineering feasibility and economics of CO₂ capture on an existing coal-fired power plant"

Evaluate the Conesville Power Plant (Ohio)

Is a great example of a study of appropriate depth to properly evaluate if a cite is feasible for a an oxy-fuel retrofit and how much it may cost.

Indiana Center for Coal Technology Research

Evaluate 3 concepts:

- 1. Concept A: Coal combustion in air, followed by CO₂ separation with specific commercial MEA-based absorption/stripping process
- Concept B: Coal combustion with O₂ firing and flue gas recycle (oxy-fuel firing)
- 3. Concept C: Coal Combustion in and CO₂ separation by a mixture of primary and tertiary amines
- Each of these technologies was evaluated against the existing design without CO_2 capture, from the standpoints of:
 - •Power generation efficiency
 - •Impacts on power generation cost (with and without supplemental plant)
 - Impacts on CO₂ emissions

450 MW Conesville Unit No. 5, located in Conesville, Ohio, was used for the power plant case study.

Approach – Space Evaluation

5-8 acres of new equipment space is needed for Unit #5 alone on the existing 200-acre power plant site

Indiana Center for Coal Technology Research

Cite evaluation for Oxy-fuel retrofit **PURDUE**

Major Conclusions:

•No major technical barriers exist for retrofitting AEP's Conesville Unit #5 to capture CO_2 for any of the three concepts considered under this study.

•Concept B (**oxy-fuel**) **appears clearly to be the best alternative** of the three concepts... for systems designed for **very high CO₂ capture** (i.e. > 90%)!!!

•If lower CO₂ capture fractions are considered, it appears that Concept A would likely be the best alternative for capture fractions below some as yet undetermined value. Concept C would also improve considerably with lower capture fractions.

Ongoing Project through CCTR

Characterize statewide coal power plant retrofit potential (simplified Conesville study)

Benefits:

- A single database that can help make decisions where a retrofit could have the most impact on emissions
- Quantify financial benefit of making one plant do a massive CO₂ sequestration project instead of a lot of smaller ones across the state

Obstacles:

- Evaluating available space from Google map images
- Finding details about different furnaces

Comments on current clean coal legislation

 If CO₂ is calculated on a state wide basis then a big plant retrofit would allow for smaller plants to continue operating (favors one big oxy-fuel retrofit).
 If it is counted on a plant by plant basis then you would not be able to use one big site as an offset for other sites (favors chemical scrubbing).

 Efficiency requires modifications of the plant, any modification that would require substantial work requires that the entire plant be brought up to Best Available Technology standards.

Current EPA rules say propose that there be no new rules for 3 years. That
means that if you start building now you won't know for 3 years if you got it
right, and then the EPA can order you to start over.

References

- ology for coal-fired power generation." Progress in Energy and Combustion
- Buhre, B.J. P. "Oxy-fuel combustion technology for coal-fired power generation." <u>Progress in Energy and Combustion</u> <u>Science</u> 31 (2005): 283-307.
- Jordal, Kristin. "Oxy-fuel combustion for coal-fired power generation with CO₂ capture opportunities and challenges." Vattenfall Utveckling, Stockholm. http://uregina.ca/ghgt7/PDF/papers/peer/054.pdf>.
- Kakaras, E., et al. "Oxy-fuel Boiler Design in a Lignite-fired Power Plant." Fuel 86 (2007): 2114-150. Science Direct. Web.
- Ochs, Tom, et al. Oxy-fuel Combustion Systems for Pollution Free Coal Fired Power Generation. Publication. Jupiter Oxygen Corporation and USDOE/Albany Research Center. Web. http://jupiteroxygen.com/wordpress/wp-content/uploads/2009/05/2004-clearwater-conference-oxy-fuel-combustion-systems-for-pollution-free-coal-fired-power-generation.pdf.
- Singh, D. "Techno-economic study of CO₂ capture from an existing coal-fired power plant: MEA scrubbing vs.. O₂/CO₂ recycle combustion." <u>Energy Conversion and Management</u> 44 (2003): 3073-091.
- 6. Steeneveldt, R., et al. "CO₂ Capture and Storage Closing the Knowing Doing Gap." *Chemical Engineering Research and Design* 84 (2006): 739-63. Web.
- Sturgeon, D. W., et al. "Demonstration of an Oxy-fuel Combustion System." *Energy Procedia* 1 (2009): 471-78. *Science Direct*. Web.
- Wall, Terry F. "Coal based oxy-combustion for carbon capture and storage: status, prospects, research needs and roadmap to commercialization." <u>Purdue University Energy Center Invited Lecture on Coal Based Energy</u>. May 28, 2009.
- 9. Wall, Terry F. "Combustion processes for Carbon Capture." <u>Proceeding of the Combustion Institute</u> 31 (2007): 31-47.
- 10. Wilkinson, Michael B., et al. "CO₂ Capture via Oxy-fuel Firing: Optimization of a Retrofit Design Concept for a Refinery Power Station Boiler." Proc. of First National Conference on Carbon Sequestration, Washington D.C. Web.
- 11. Wilkinson, Michael B., et al. "Oxy-fuel Conversion of Heaters and Boilers for CO₂ Capture." Proc. of Second National Conference on Carbon Sequestration, Washington D.C. 2003.
- Zanganeh, Kourosh E., and Ahmed Shafeen. "A Novel Process Integration, Optimization and Design Approach for Large Scale Implementation of Oxy-fired Coal Power Plants with CO₂ Capture." *International Journal of Greenhouse Gas Control* 1 (2007): 47-54. *Science Direct*. Web.

Questions?

Indiana Center for Coal Technology Research

Source: (1),(6)

Appendix A: Breakdown of

Oxy-Fuel Costs

Comparison of annual costs for O_2/CO_2 and amine scrubbing

	Amine	O_2/CO_2
Capital cost	\$294,249,975	\$316,292,097
Amortised capital cost (\$/year)	\$27,775,116	\$29,855,736
O&M (4% of capital cost) Cooling water (\$0.01/m ³) Scrubber chemicals (from Fluor study) MEA make-up (\$1.55/ton CO ₂ produced)	\$11,769,999 \$2,869,812 \$7,000,000 \$6,606,720	\$12,651,684 \$947,641 - - \$12,500,225
Operating subtotal (\$/year)	\$28,240,031	\$13,599,325
GT fuel (MMBtu/year) NB boiler fuel (85% efficiency) (MMBtu/year) ASU NG (MMBtu/year) Total NG (MMBtu/year)	2,821,824 9,742,923 - 12,564,747	8,193,997 50,541 8,244,538
Annual NG cost (\$4.00/MMBtu)	\$50,258,989	\$32,978,153
Total annual cost	\$106,280,636	\$76,433,214
 Original CO₂ emissions (ton/year) CO₂ avoided from coal plant (ton/year) CO₂ emissions from natural gas (ton/year) NET CO₂ avoided (ton/year) % CO₂ avoided 	2,960,000 2,664,000 740,315 1,923,685 65%	2,960,000 2,664,000 466,701 2,197,299 74%
Capture cost (\$/ton CO ₂) Capture cost (¢/kWh)	\$55 ¢3.3	\$34 ¢2.4

Indiana Center for Coal Technology Research

Source: (5)

S