Sensor Network Design for Multimodal Freight Traffic Surveillance

Eunseok Choi

(Joint work with Xiaopeng Li and Yanfeng Ouyang)
Motivation

- **Challenge: Real-Time Traffic Information Surveillance and Estimation**
 - e.g., travel time estimation, traffic volume estimation
 - Traffic is unstable in congestion (Li et al, 2009), e.g., which increases the difficulty of estimation
 - Congestion is common at intermodal traffic connections
- **Helper: Sensor Technologies**
 - Accurately sample real-time traffic information
 - Increase the accuracy of estimation at the network level.
Background

- **Sensor Technologies**
 - Loop Detector
 - Video Camera
 - **RFID**: widely used vehicle detection method
 - *e.g.*, *I-Pass in Chicago*
 - **Identification of vehicles**
 - *30~100 ft typical detection range*
 - **Installation & operating costs** ($70,000+ per installation)

- **Problem: Where to Deploy Sensors?**
 - Maximize surveillance benefit for any installation budget
 - Consider potential sensor failures
 (Rajagopal and Varaiya, 2007; Carbunar, 2005)
Related Literature

• Sensor Location for Traffic Surveillance
 – Flow volume estimation in highway networks
 – Flow coverage in railroad networks (Ouyang et al. 2009)
 – Corridor travel time estimation (Ban et al. 2009)

• Facility Location
 – Discrete models (Daskin 1995; Drezner 1995)
 – Continuum models
 (Newell 1971, 1973; Daganzo and Newell 1986; Daganzo 1991)
 – Reliable models allowing for facility failure
 (Daskin 1983; Snyder and Daskin 2005; Cui et al. 2009; Li and Ouyang 2009)
Objective of Current Study

- Develop a Sensor Location Framework for Traffic Surveillance
 - General benefit measure
 - flow coverage
 - path coverage (Origin-Destination travel time estimation)
 - Suitable for general transportation network topology
 - Consider expected benefit under probabilistic sensor failures
Major Tasks

Team Work

- Mathematical model
- Solution techniques
- Case studies

My Focus

- Data Preparation for Chicago Case Study
 - Intermodal Transportation Network
 - Freight Traffic
- Analysis and Insights
Model and Solution Algorithm

- **Linear Integer Program**
 - Maximize expected flow coverage and path coverage
 - Probabilistic iid sensor failures
 - NP-hard

- **CPLEX**
 - Fails even for moderate-size instances

- **Greedy Heuristic**
 - Simple and intuitive
 - No optimality guarantee
 - May yield sub-optimal solution

- **Lagrangian Relaxation (LR)**
 - Works efficiently
 - Provides optimality gap (solution quality)
 - Embedded in a Branch & Bound framework to eliminate possible residual gaps

\[
\max_{h,e} \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{J}_i} \sum_{r=0}^{R_i-1} q^r (1-q) f_i \left[-\beta_i m_{ij} h_{ijr} + (\beta_i m_{ij} + \beta_e) e_{ijr} \right]
\]

subject to

\[
\sum_{j \in \mathcal{J}_i} x_j \leq N,
\]

\[
\sum_{r=0}^{R_i-1} h_{ijr} = x_j, \forall i \in \mathcal{I}, \forall j \in \mathcal{J}_i,
\]

\[
\sum_{r=0}^{R_i-1} e_{ijr} = x_j, \forall i \in \mathcal{I}, \forall j \in \mathcal{J}_i,
\]

\[
\sum_{j \in \mathcal{J}_i} h_{ijr} \leq \begin{cases} 1, & r = 0, \forall i \in \mathcal{I}, \forall r = 0, 1, \ldots, R_i - 1, \\ \sum_{j \in \mathcal{J}_i} h_{ij(r-1)}, & \text{otherwise}, \forall i \in \mathcal{I}, \forall r = 0, 1, \ldots, R_i - 1. \end{cases}
\]

\[
\sum_{j \in \mathcal{J}_i} e_{ijr} \leq \sum_{j \in \mathcal{J}_i} h_{ijr}, \forall i \in \mathcal{I}, \forall r = 0, 1, \ldots, R_i - 1,
\]

\[
x_j, h_{ijr}, e_{ijr} \in \{0, 1\}, \forall i \in \mathcal{I}, \forall j \in \mathcal{J}_i, \forall r = 0, 1, \ldots, R_i - 1.
\]
Test Case: Sioux-Falls Network

- 24 candidate locations for potential sensor installations
- 528 O-D paths (obtained with shortest path algorithm)
- LR algorithm vs. CPLEX over 36 instances, within 1800 CPU seconds
 - LR beats CPLEX on almost all instances
 - LR yields optimal solution for 35 instances
 - CPLEX failed to yield optimal solution for 21 instances
 - CPLEX failed to yield a feasible solution for 4 instances
Chicago Case: Data Preparation

- Highway network & rail terminals
- Consider conjunctions as origin/destination of Chicago traffic
 - Ignore “through” traffic
 - Destination volume based on nearby population
 - Freight takes the shortest path (distance)
 - All rail freights are transferred at Terminals
Data Preparation – Freight Movement

- Macroscopic Freight Traffic Statistics
 - Traffic from other states -> Traffic Assignment
 - Traffic distribution
 - Terminal Capacity
 - Chicago Area Population

<table>
<thead>
<tr>
<th>(unit: thousand tons)</th>
<th>Inbound</th>
<th>Outbound</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Modes</td>
<td>384,554</td>
<td>398,993</td>
</tr>
<tr>
<td>Single Mode</td>
<td>371,023</td>
<td>381,750</td>
</tr>
<tr>
<td>Truck</td>
<td>312,279</td>
<td>294,611</td>
</tr>
<tr>
<td>Truck: Outer States</td>
<td>117,289</td>
<td>87,778</td>
</tr>
<tr>
<td>Rail</td>
<td>34,343</td>
<td>43,957</td>
</tr>
<tr>
<td>Multi Modes</td>
<td>5,926</td>
<td>9,864</td>
</tr>
</tbody>
</table>

(Source: Bureau of Transportation Statistics www.bts.gov/)
Network Representation

→ 89 total nodes
→ 363 total links
→ 1046 O-D flows

Figure 1.5 Network representation of the intersection in Figure 1.4: (a) representing the intersection as a node; (b) a detailed intersection representation.

(Sheffi, 1985)

21 Conjunctions
17 Terminals
8 Access Points
Analysis Scenarios

- Number of sensors (10, 20)
- Sensor Failure Probability (0%, 20%)
- Coverage Type (flow, path)
Results

Flow Coverage – 10 sensors

0% Failure
96.8% Coverage

20% Failure
89.4% Coverage
Results

Flow vs. Path Coverage – 0% failure

Flow
96.8% Coverage

Path
67.8% Coverage
Results
Flow vs. Path Coverage – 20% failure

Flow
89.4% Coverage

Path
48.5% Coverage
Results

Path Coverage – 10 vs. 20 sensors

0% Failure
67.8% Coverage

0% Failure
92.3% Coverage
Results

- **Net Benefit** vs **Failure Probability**
 - Path Coverage: Blue line
 - Flow Coverage: Red line

- **Net Benefit** vs **# of Installations**
 - Path Coverage: Blue line
 - Flow Coverage: Red line
Conclusions

• A new reliable sensor location model to improve intermodal freight traffic surveillance in Chicago
• Customized algorithms to solve the problem efficiently
• Insights on optimal sensor network deployment
• Potential Societal Benefits
 – Increase the visibility of freight movement
 – Traffic management based on congestion points
 – Network and infrastructure planning
Thank You

Eunseok Choi echoi23@illinois.edu
Xiaopeng Li li28@illinois.edu
Yanfeng Ouyang yfouyang@illinois.edu
Future Research

- Uncertainty in traffic flow and routing
- Site-dependent failure probability
- Develop continuous models
Challenges

- **Obtaining Sufficient Freight Data**
 - Difficult to portray more realistic illustration
 - Better understanding of freight movements is required
- **Uncertainty at much larger network**
 - Much more complex work is required
 - Higher chance of error at solving process
RFID

- Range around 31 ft.
 - Possible to increase the range by boosting the power up, but much higher cost
 - http://www.businesswire.com/portal/site/transcore/?ndmViewId=news_view&newsId=20041020005274&newsLang=en

- Failure Probability <3%

- Installing RFID sensor system
 - ~$70,000 per location
 - Plus maintenance cost
 - IGA Reader, Fusion Redundant Reader
 - http://www.tollroadsnews.com/node/3280