AGU 2017 Oral Presentation by XinXin Jin: Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management

Center for the Environment
December 15, 2017
10:50 AM - 11:05 AM
New Orleans Ernest N. Morial Convention Center - 383-385

Description

Management of crop residues using plastic film mulching (PFM) has the potential to improve soil health by accelerating nutrient cycling and facilitating stable C pool production; however, a key aspect of this process—microbial immobilization of residue C—is poorly understood, especially under PFM when combined with different fertilization treatments. A 360-day in situ 13C-tracing technique was used to analyze the contribution and dynamics of microbial biomass C (MBC) to soil organic C (SOC) after 13C-labelled maize straw residue was applied to micro-plot topsoil in a cultivated maize (Zea mays L.) field under 27-year PFM and four fertilization treatments. Over the course of the experiment, MBC content was significantly (P<0.05) higher in treatments of manure (M) and manure plus nitrogen (MN) compared to the no-fertilization (CK) and nitrogen (N) treatments, regardless of PFM. Compared to no PFM controls, PFM enhanced the decomposition of maize straw during summer (Day 60) in the M and MN treatments, exhibiting increases of 93.0% and 28.6% in straw-derived 13C-MBC and 80.4% and 82.9% in 13C-MBC/13C-SOC, respectively. Overall, both PFM and organic manure treatments improved soil fertility through microbe-mediated incorporation of C derived from newly-added maize straw. Our results indicate that microbial growth and activity are affected by the utilization of different C sources and most dramatically during early seasonal transition.

Contact Details

Add to calendar

Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, (765) 494-4600

© 2017 Purdue University | An equal access/equal opportunity university | Copyright Complaints | Maintained by Discovery Park

Trouble with this page? Disability-related accessibility issue? Please contact Discovery Park at dpweb@purdue.edu.