Effective Disinfection

- On average, patients are quarantined for 12 days, considering the 3-day overlap period at opening and the 10-day minimum quarantine period. This results in a turnover rate of 18 days.

Autonomous Mobile System

- The base of the robot is an omnidirectional vehicle capable of payloads up to 200 kg.
- The base has integrated sensors such as LiDAR, 3D cameras, collision sensors, and IMUs to perform autonomous navigation through SLAM. The sensors also enable fail-safe operation and error correction.
- The UVC lamps on the robot are 254 nm tubes in a housing with antimicrobial coating.

SAFETY GUIDELINES

Because the COVID-19 virus (SARS-CoV-2) is so new, the scientific community doesn’t yet have a specific deactivation dosage. However, the dosage values for comparable viruses in the same SARS virus family are 10-20 mJ/cm² using direct UVC light at a wavelength of 254 nm; this dosage will achieve 99.9% disinfection (i.e., inactivation) under controlled lab conditions. In real-life, the virus is often hidden or shaded from direct UVC light, reducing UVC’s effectiveness.

- UV-C dosage from the tower used in this robot is shown in the figure above. According to CDC guidelines the dosage must be less 20 mJ/cm² and the wavelength of 280 nm. The operator must also wear proper PPE while operating.

PEOPLE RESPONSIBLE

Richard Voyles, Luciano Castillo, Eric Butt, Scott Gilkey, Greg Weddle

ACKNOWLEDGEMENT

This work was funded in part by IntelCorp Covid-19 fund, the Indiana Manufacturing Institute, the NSF RoSe-Hub Center, and NSF under CNS-1439717.
Efficient Disinfection

Autonomous Mobile Robots

Timeliness

Method of Disinfection

Safety Priority
Robots for COVID-19 Pandemics: Protecting Essential Workers in Different Phases

Evolving Pandemics, Changing Demands

<table>
<thead>
<tr>
<th>Onset Phase</th>
<th>Quarantine Phase</th>
<th>Reopening Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hospitals overflow facing a novel virus.</td>
<td>• General public stay at home while retail staffs remain at work.</td>
<td>• Schools and businesses reopen.</td>
</tr>
<tr>
<td>• Deficient PPE supplies. Medical workers come into direct contact with infected people.</td>
<td>• Prevent community spread at public indoor spaces.</td>
<td>• Prevent sporadic outbreak. Low risk of exposure in general but everyone is involved.</td>
</tr>
</tbody>
</table>

Who are at risk?

- Medical workers come into direct contact with infected people.
- Essential non-medical workers, especially retail staffs.
- They face lower risks but prolonged exposure time.
- Professors, students, and janitorial staffs.
- General public working in offices are involved.

How Robots can Help

- Medical robots acting as telepresence of physicians.
- Performs basic screening and diagnostic tasks:
 - Automatic temperature taking
 - Teleoperated ultrasound examination
 - Teleoperated stethoscope examination
 - Deployed for testing in Beijing and Wuhan in March.
 - Physical separation of physicians with pathogens yielded improved sense of safety.
- Disinfection robot that leans the air and surfaces of public indoor spaces
- Multimodal disinfection that are occupant-safe
 - Bernoulli air filtration + enclosed UVC disinfection
 - Combination of conventional spraying with electrostatic spraying for enhanced coverage
 - Robot PPE is a photocatalytic nano-coating on the robot surface, which prevents cross-infection from happening through the robot.
 - Combination of air filtration with a moving robot cleans the saliva plumes carrying the pathogen before they spread and finds the next victim.
- Modular payload design for quickly modifying the disinfection robot for multiple application scenarios.
 - By mounting a UVC light instead of the air filtration unit, it can be used for disinfecting isolation dorms during shift.
 - Unified control interface for quick adaptation
 - Back-seat driving which provides the robot with autonomy as well as fault identification ability.
 - Robot seeks help on the “robot call center” when it get stuck, and learns from the teleoperator for mitigating future problems.