Residential Heat Pump with Two-Stage Compression for Nordic Climates

Nordic climates necessitate larger heating requirements than more southern, temperate regions. Typical heat pump systems include single-stage and ground, i.e. geothermal, heat pumps. These traditional heat pump solutions have lower efficiencies and higher operating cost relative to multi-compressor heat pump systems.

Researchers at Purdue University have developed a heat pump system that both operates at a relatively higher efficiency and at lower cost. This multi-stage heat pump can utilize two separate methods of heat transfer. Four modes of operation ensure the pump is operating in the most efficient manner for the given set of environmental conditions. The indoor air coil is also designed to fit the target climate and minimizes unnecessary energy consumption. Oil is well managed by a novel technique in the heat pump system. This ensures the compressors are running with the required amount of lubrication and are highly reliable. In addition, the heat pump is designed for manufacturability and is thereby more suitable to produce and maintain. Finally, the whole system is enclosed in a casing meant to reduce sound. The compressors themselves are acoustically dampened, allowing the residents of the building to enjoy both proper climate control as well as a quiet atmosphere.

Domain:
- Mechanical Engineering

Advantages:
- Enables heat pump use in non-traditional northern, temperate regions
- Lower running cost
- Higher efficiency compared to traditional heat pumps
- Acoustically dampened

INNOVATOR BIOGRAPHY

Dr. Eckhard Groll is the Director of Office of Professional Practice and a Professor of Mechanical Engineering at Purdue University. His research interests include thermal sciences as applied to HVAC&R systems and equipment.