Micro-Channel Heat Exchanger for Metal Hydride Hydrogen Storage

There is great interest in developing hydrogen power devices, especially hydrogen powered automobiles. One prerequisite for this application is that there is enough hydrogen to give comparable driving ranges as conventionally fueled automobiles. However, hydrogen poses the problem of very low density. To overcome this obstacle, solid-state hydrogen storage techniques that use metal hydrides (both high pressure and complex metal hydrides) have been developed. However, large quantities of heat are released from the reaction of hydrogen with the metal hydride once the hydrogen gas is charged into the vehicle’s storage system, making the heat exchanger the most crucial component of the hydrogen storage system.

Inventors at Purdue University have developed a unique micro-channel heat exchanger for solid-state hydrogen storage. The patent pending internal micro-channel design optimizes both powder/pellet contact area for increased heat transfer and hydride powder/pellet capacity. This highly efficient heat exchanger provides the necessary cooling power to meet the Department of Energy, fill time target of less than 5 min. This is the only design to achieve this target. No other metal hydride storage systems have been demonstrated to cross the 5 min fill time mark. In fact, published values range from 10 to as high as 100 minutes.

Domain:
- Mechanical Engineering

Advantages:
- Five minute fill time for hydrogen fuel tank
- Micro-channel design

Dr. Issam Mudawar is a professor of Mechanical Engineering at Purdue University. His research is in areas including heat transfer, materials processing, electronic cooling, thermal management of aerospace systems and nuclear reactor safety.