CO₂ Capture From *Existing* **Coal-Fired Power Plants**

Capture Technology Choices and Costs

> March 6, 2008 Jared Ciferno

National Energy Technology Laboratory

Office of Systems Analysis and Planning (OSAP) Functional Teams

Systems

- oriented toward technologies and processes
- focused on systems inside the plant boundary

Situational Analysis

- oriented toward issues and policies
- focused on higher-level, macro-systems

Benefits

- oriented toward program metrics
- focused on evaluation of R&D programs, assessment of national benefits, "What if?" Studies

Coal-fired Generation CO₂ Forecast AEO'07 Reference Case

NETL

Large Proportion of Total Coal-fired CO₂ From Existing Plants

Key Questions

If carbon constraints are mandated in the U.S. then.....

- 1. What are the key challenges associated with PC retrofits?
- 2. What are the CO₂ capture technology options available **today** for existing plants?
- 3. What are the economics of retrofitting an **existing** pulverized coal plant with various levels of CO₂ capture?
- 4. Is there a way to significantly reduce CO₂ capture cost for the **existing** fleet?
- 5. What level of CO₂ recovery is economically optimal or necessary to meet proposed regulations?

Key Challenges to PC CO₂ Retrofits

- 1. Space limitations acres needed for current scrubbing
- 2. Major equipment modifications or redundancy
- 3. Regeneration steam availability can steam turbine operate at part load?
- Sulfur additional deep sulfur removal required for most CO₂ sorbents
- 5. Make-up power satisfy need to maintain baseload output
- 6. *Local storage availability (saline formation, EOR)
- 7. *Scheduling outages for CO₂ retrofits
- 8. *Post-retrofit dispatch implications due to increase in COE
- 9. *Retrofit triggering NSPS review
- 10. *Proposed legislation

Existing Pulverized Coal Power Plant

Carbon Sequestration From Existing Power Plants Feasibility Study (2007)

Location: AEP Conesville Unit #5

- Total 6 units = 2,080 MWe
- Unit #5:
 - Subcritical steam cycle (2400psia/1005°F/1005°F)*
 - Constructed in 1976
 - 463 MW gross (~430 MW net)
 - ESP and Wet lime FGD (95% removal efficiency, 104 ppmv)

Mid-western bituminous coal

Ultimate Analysis (wt.%)	As Rec'd
Moisture	10.1
Carbon	63.2
Hydrogen	4.3
Nitrogen	1.3
Sulfur	2.7
Ash	11.3
Oxygen	7.1
HHV (Btu/lb)	11,293

Detailed Systems Analysis Scope

- 1. Assess 30%, 50%, 70%, 90% and CO_2 capture levels
- 2. Employ CO₂ scrubbing technology advances
- 3. <u>Detailed</u> steam turbine analysis by ALSTOM's steam turbine retrofit group
- 4. Employ CO₂ capture and compression heat integration
- 5. Site visits to specify exact equipment location
- 6. Include make-up power costs in economic analysis

Design Basis: Assumptions

Economic

Dollars (Constant)	2006
Depreciation (Years)	20
Equity (%)	55
Debt (%)	45
Tax Rate (%)	38
After-tax Weighted Cost of Capital (%)	9.67
Capital Charge Factor (%)	17.5
Capacity Factor (%)	85
Make-up Power Cost (¢/kWh)	6.40
CO ₂ Transport and Storage Costs not in	cluded

Existing Plant Modifications

Modified FGD Process

- Second stage absorber added to achieve 99.7% SO₂ removal efficiency (6.5 ppmv)
- 2. Estimated EPC cost for each case (30-90%) is \$20.5MM
- 3. Includes an SO₂ Credit equal to \$608/ton in the Variable O&M cost

Amine Scrubbing Improvements Employed Since ~2000

Potential Retrofit Options	Outcome/Notes
1. Heat Integration	↓ Steam Consumption
2. Minimize equipment needed	↓ Capital cost (ex. No flue gas cooler)
3. Lower cost of materials	↓ Capital cost (stainless vs. carbon steel)
4. Structured column packing	↓ Capital cost, ↓ Sorbent rate (ex. KS1)
5. Plate-and-frame HX	↓ Capital cost
6. ANSI Pumps vs. API Pumps	↓ Capital cost
7. Vapor-recovery system	↓ Steam Consumption
8. Large diameter absorbers	↓ # of Absorbers, ↓ Capital cost
9. Advanced solvents*	↓ Capital cost, ↓ Sorbent circ. rate (ex. KS1)
10. Lower re-boiler duty	↓ Steam Consumption

*Example:

Current amines (MEA) require at least 1,600 Btu/lb CO_2 captured Fluor Econamine FG+ requires 1,300-1,400 Btu/lb CO_2 captured Mitsubishi's KS-1 solvent requires 1,200 Btu/lb CO_2 captured

CO₂ Capture Process Parameters

Process Parameter	Units	2007	2001	AES Design
Plant Capacity	Ton/Day	9,350-3,120	9,888	200
CO ₂ Recovery	%	90-30	90	96
CO ₂ in Feed	mol %	12.8	13.9	14.7
SO ₂ in Feed	ppmv	10 (Max)	10 (Max)	10 (Max)
Solvent		MEA	MEA	MEA
Solvent Concentration	Wt. %	30	20	17-18
Lean Loading	mol CO ₂ /mol amine	0.19	0.21	0.10
Rich Loading	mol CO ₂ /mol amine	0.49	0.44	0.41
Steam Use	lbs Steam/lb CO ₂	1.67	2.6	3.45
Stripper Feed Temp	٥F	205	210	194
Stripper Bottom Temp	٥F	247	250	245
Feed Temp to Absorber	٥F	115	105	108

Note: Additional data in "notes pages"

- <u>Reboiler operated at 45 psia—reduced from 65 psia used in 2000 study</u>
- Absorber contains two beds of structured packing

Flue Gas Bypass

Bypass method determined to be least costly method to obtain lower CO₂ recovery levels

CO ₂ (Moles/hr)	Case 1 (90%)	Case 2 (70%)	Case 3 (50%)	Case 4 (30%)
FLUE GAS	19,680	19,680	19,680	19,680
BYPASS	0	4,374 8,746		13,120
ABSORBER FEED	19,680	15,306	10,934	6,560
STACK	1,962	5,924 9,846		13,770
CO ₂ PRODUCT	17,720	13,766	9,822	5,906
# Trains	2	2	2	1

CO₂ Capture, Compression, Dehydration, and Liquefaction

CO₂ compression to 2,015 psia, EOR specifications

Parameter	Wt %	Vol %	ppmv
Carbon Dioxide	96	94.06	940600
C ₂ + and Hydrocarbons	2	2.87	28700
Hydrogen Sulfide	1	1.27	12700
Nitrogen	0.6	0.92	9200
Methane	0.3	0.81	8100
Oxygen	0.03	0.04	400
Mercaptans and Other Sulfides	0.03	0.02	200
Moisture	0.006	0.01	100

Dakota Gasification Pipeline EOR Specification

Four Stage Process:

Compression > Drying > Refrigeration > Pumping

CO₂ Capture Compression, Dehydration and Liquefaction

CO₂ Capture Process Equipment

	2007 Study		2001 Study		
% CO ₂ Capture	90		96		
CO ₂ Capture Process	No.	ID/Height (ft)	No.	ID/Height (ft)	
Absorber	2	34/126	5	27/126	
Stripper	2	22/50	9	16/50	
Distance from stack	100 ft		1,500 feet		
Heat Exchangers	No.		No.		
Reboilers	10		9		
Stripper CW Cond.	12		9		
Other Heat Exchangers	36		113		
Total Heat Exchangers	58		Total Heat Exchangers58131		31
CO ₂ Compressor	2		7		
Propane Compressor	2		7		
TIC Cost \$MM	370		67	70	

CO₂ scrubbing technology improvements lead to significant decrease in equipment requirements and capital cost!

Steam Turbine Modifications

Design Assumptions:

- 1. Existing turbine/generator required to operate at maximum load in case of a trip of the MEA plant
 - All pressures to be within a level that no steam will be blown off
- 2. Feedwater system modifications to allow CO₂ capture and compression system heat integration
 - CO₂ compressor intercoolers, stripper overhead cooler, refrigeration compressor cooler
- 3. Well within the LP turbine "lower load limit" after significant steam extraction for the 90% case (Conesville #5 instruction manual)
- 4. New Let Down turbine vs. modifying existing LP turbine

Steam Turbine Modifications New Let Down Turbine

- 1. New LT output between 15 MW (30%) and 62 MW (90%)
 - EPC Cost ~ \$10MM for each case

2.

Steam Turbine Modifications *Alternatives to LDT?*

Retrofit solution for 30% Case

New Equipment Locations Identified

Plant Performance

- Plant Electrical Output
- Plant Auxiliary Power
- Plant Thermal Efficiency
- Plant CO₂ Emissions

Power Output Distribution

Base load (Net) Output Impact Losses to Grid

Plant Thermal Efficiency (HHV Basis)

Economics

- Capital Costs
- Incremental COE
- Mitigation Costs
- Sensitivity Analyses

Plant Retrofit Capital Costs

EPC Costs (\$1000's)	2001	2007 Study				
% CO ₂ Capture	96	90	70	50	30	
CO ₂ Capture & Compression	668,277	368,029	333,406	186,694	134,509	
Flue Gas Desulfurization	22,265	22,265	22,265	22,265	22,265	
Letdown Steam Turbine	10,516	9,800	9,400	8,900	8,500	
Boiler Modifications	0	0	0	0	0	
Total Retrofit Costs	701,057	400,094 365,070 280,655		280,655	211,835	
New Net Output (kW)	251,634	303,317	333,245	362,945	392,067	
\$/kW-New Net Output	2,786	1,319	1,095	773	540	
\$/kW-Original Net Output*	1,616	922	842	647	488	
*Original net output = 433,778 kW	<u> </u>					

53% Reduction in Incremental Capital Costs

ſ

Note: Capital costs from 2001 study were escalated to 2006 dollars

Notes:

COE is based off Total Plant Cost (Bare Erected Cost + Project and Process Contingencies); Does not include owner's costs Base power plant cost for the existing plant obtained from Energy Velocity

Notes:

Greenfield plant is a supercritical PC COE is based off Total Plant Cost (Bare Erected Cost + Project and Process Contingencies); Does not include owner's costs Retrofit power plant make-up power assessed between 6.40 and 12 ¢/kWh Base power plant cost for the existing plant obtained from Energy Velocity

Notes:

Greenfield plant is a supercritical PC

COE is based off Total Plant Cost (Bare Erected Cost + Project and Process Contingencies); Does not include owner's costs Retrofit power plant make-up power assessed between 6.40 and 12 ¢/kWh Base power plant cost for the existing plant obtained from Energy Velocity

Economic Results *CO*₂ *Captured Cost*

Economic Results *CO*₂ *Avoided Cost*

Conclusions

- 1. No major technical barriers found to retrofit with current state-of-the-art scrubbing technology
- 2. Compared to the 2001 study, this study with an advanced amine (90% CO₂ Capture case) showed:
 - Marked improvement in energy penalty and reduction in cost
- 3. Near linear decrease in incremental COE with reduced CO₂ capture level
- 4. Sufficient results to answer various definitions of "optimal CO₂ capture" from existing plants

Thank You!

Email: <u>Jared.Ciferno@netl.doe.gov</u> Phone: 412-386-5862

NETL Energy Analysis Link: www.netl.doe.gov/energy-analyses

