

Indiana Center for Coal Technology Research

COAL CHARACTERISTICS

CCTR Basic Facts File # 8

Brian H. Bowen, Marty W. Irwin

The Energy Center at Discovery Park Purdue University CCTR, Potter Center, 500 Central Drive West Lafayette, IN 47907-2022 http://www.purdue.edu/dp/energy/CCTR/ Email: cctr@ecn.purdue.edu

October 2008

As geological processes apply pressure to peat over time, it is transformed successively into different types of coal

Source: Kentucky Geological Survey

http://images.google.com/imgres?imgurl=http://www.uky.edu/KGS/coal/images/peatcoal.gif&imgrefurl=http://www.uky.edu/KGS/coal/coalform.htm&h=354&w=579&sz= 20&hl=en&start=5&um=1&tbnid=NavOy9_5HD07pM:&tbnh=82&tbnw=134&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa%3DX

COAL ANALYSIS

Elemental analysis of coal gives empirical formulas such as: C₁₃₇H₉₇O₉NS for Bituminous Coal C₂₄₀H₉₀O₄NS for high-grade Anthracite

Source: http://cc.msnscache.com/cache.aspx?q=4929705428518&lang=en-US&mkt=en-US&FORM=CVRE8

BITUMINOUS COAL

Bituminous Coal: Great pressure results in the creation of bituminous, or "soft" coal. This is the type

most commonly used for electric power generation in the U.S. It has a higher heating value than either lignite or sub-bituminous, but less than that of anthracite. Bituminous coal is mined chiefly in the Midwest & Appalachia

http://images.google.com/imgres?imgurl=http://www.mii.org/Minerals/Minpics1/CoalBituminous.jpg&imgrefurl=http://www.mii.org/Minerals/photocoal.html&h=308&w=360&sz= 38&hl=en&start=1&um=1&tbnid=ZKBL7apLynZMcM:&tbnh=104&tbnw=121&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa %3DX

ANTHRACITE COAL

Anthracite: Sometimes also called "hard coal," anthracite forms from bituminous coal when great

pressures developed in folded rock strata during the creation of mountain ranges. This occurs only in limited geographic areas - primarily the Appalachian region of Pennsylvania. Anthracite has the highest energy content of all coals & is used for making coke, a fuel used in steel foundry ovens

http://images.google.com/imgres?imgurl=http://www.mii.org/Minerals/Minpics1/CoalBituminous.jpg&imgrefurl=http://www.mii.org/Minerals/photocoal.html&h=308&w=360&sz= 38&hl=en&start=1&um=1&tbnid=ZKBL7apLynZMcM:&tbnh=104&tbnw=121&prev=/images%3Fq%3Dcoal%2Bphotos%26svnum%3D10%26um%3D1%26hl%3Den%26sa %3DX

COAL RANK

<u>Anthracite</u> coal is a dense, hard rock with a jetblack color & metallic luster. It contains between 86% and 98% carbon by weight, & it burns slowly, with a pale blue flame & very little smoke

Bituminous coal (in Indiana), contains between 69% & 86% carbon by weight

<u>Sub-bituminous</u> coal contains less carbon, more water & is a less efficient source of heat

Lignite coal, or brown coal, is a very soft coal that contains up to 70% water by weight. Emits more pollution than other coals

<u>Volatile matter</u> consists of aliphatic carbon atoms (linked in open chains) or aromatic hydrocarbons (one or more six-carbon rings characteristic of benzene series) and mineral matter

<u>Ash</u> consists of inorganic matter from the earth's crust:- limestone, iron, aluminum, clay, silica, and trace elements (concentrations of less than 1000 ppm [<0.1% of a rock's composition] of zinc, copper, boron, lead, arsenic, cadmium, chromium, selenium)

COAL PHYSICAL PARAMETERS

Each type of coal has a certain set of physical parameters which are mostly controlled by

- (a) moisture
- (b) volatile content (aliphatic or aromatic hydrocarbons) &
- (c) carbon content
- Aliphatic designating a group of organic chemical compounds (carbon compounds) in which the carbon atoms are linked in open chains
- Aromatic containing one or more six-carbon rings characteristic of the benzene series
- Hydrocarbons numerous organic compounds, such as benzene & methane, that contain only carbon & hydrogen

CARBON IN COAL

<u>Carbon</u> forms more than 50% by weight & more than 70% by volume of coal (this includes inherent moisture). This is dependent on coal *rank*, with higher rank coals containing less hydrogen, oxygen & nitrogen, until 95% purity of carbon is achieved at Anthracite rank & above

<u>**Graphite</u>** formed from coal is the end-product of the thermal & diagenetic conversion (*process of chemical & physical change in deposited sediment during its conversion to rock*) of plant matter (50% by volume of water) into pure carbon</u>

COAL VOLATILE MATTER

Volatile matter is material that is **driven off when coal is heated to 950°C (1,742°F)** in the absence of air under specified conditions - components of coal, except for moisture, which is liberated usually as a mixture of **short & long chain hydrocarbons**, aromatic hydrocarbons & some sulphur - measured practically by determining the loss of weight

Consists of a mixture of gases, **low-boiling-point** organic compounds that condense into oils upon cooling, & tars.

Volatile matter decreases as rank increases

COAL VOLATILE MATTER

Class	Class Volatile matter ¹⁾ (weight %)		escription		
101	< 6.1	Anthropitop			
102	3.1 - 9.0	Animacites			
201	9.1 - 13.5	Dry steam coals			
202	13.6 - 15.0				
203	15.1 - 17.0	Cooking steams coals	l ow volatile steam coals		
204	17.1 - 19.5				
206	19.1 - 19.5	Heat altered low volatile steam coals			
301	19.6 - 32.0	Prime cooking coals			
305	19.6 - 32.0	Mainly heat altered coole	Medium volatile coals		
306	19.6 - 32.0	Mainly heat altered coals			
401	32.1 - 36.0	Very strengly coking cools			
402	> 36.0	very strongly coking coals			
501	32.1 - 36.0	Strongly colving coole			
502	> 36.0	Strongly coking coals			
601	32.1 - 36.0	Medium coking coole			
602	> 36.0	Medialli cokilig coals	High volatile coale		
701	32.1	Weekly coking cools	riigii volatile coals		
702	> 36.0	Weakly Coking Coals			
801	32.1 - 36.0	Very weakly caking coale			
802	> 36.0	very weakly coking coals			
901	32.1 - 36.0	Non-coking cools			
902	> 36.0	Non-coking coals			

http://www.engineeringtoolbox.com/classification-coal-d_164.html

SULFUR IN COAL

Although coal is primarily a mixture of **carbon** (*black*) & **hydrogen** (*red*) atoms, sulfur atoms (*yellow*) are also trapped in coal, primarily in two forms. In one form, (1) the sulfur is a separate particle often linked

with iron (green, pyritic sulfur) with no connection to the carbon atoms, as in the center of the drawing (fools gold). In the second form, (2) sulfur is chemically bound to the carbon atoms (organic sulfur), such as in the upper left

COAL TYPICAL CONTENT

% weight	Anthracite	Bituminous	Sub- Bituminous	Lignite
Heat Content (Btu/lb)	13,000-15,000	11,000-15,000	8,500-13,000	4,000-8,300
Moisture	< 15%	2 - 15%	10 - 45%	30 - 60%
Fixed Carbon	85 - 98%	45 - 85%	35 - 45%	25 - 35%
Ash	10 - 20%	3 - 12%	≤ 10%	10 - 50%
Sulfur	0.6 - 0.8%	0.7 – 4.0%	< 2%	0.4 – 1.0%
Chlorine (ppm)	340 ± 40ppm	340 ± ppm	120 ± 20ppm	120 ± 20ppm

COAL TYPES

Geologists also classify coal types according to the **organic debris, called macerals**, from which the coal is formed. Macerals *(microscopic organic constituents found in coal)* are identified (*microscopically*) by reflected light - the reflective or translucent properties of the coal indicating the individual component macerals & **the way they have combined to form the coal**

The purpose of classifying coal in this way is to determine its best uses. **Mineral content is assessed** by burning coal & measuring the amount of incombustible material remaining, **referred to as the ash content of coal**

COAL RANK

The degree of 'metamorphism' or coalification undergone by a coal, as it matures from peat to anthracite, has an important bearing on its physical and chemical properties, & is referred to as the 'rank' of the coal

COAL PARAMETER VARIATIONS WITH RANK

Generally the moisture content increases with decreasing rank & ranges from 1 to 40%

Moisture content is determined by heating an air-dried coal sample at 105°–110° C (221°–230° F) under specified conditions until a constant weight is obtained

Volatile matter is material that is driven off when coal is heated to 950° C (1,742° F) in the absence of air under specified conditions. It is measured practically by determining the loss of weight

Source: American Iron and Steel Institute, http://www.steel.org/learning/howmade/coal.htm

COAL PARAMETER VARIATIONS WITH RANK

The **fixed carbon** content of the coal is the carbon **found in the material which is left after volatile materials are driven off**. This differs from the ultimate carbon content of the coal because some

carbon is lost in hydrocarbons with the volatiles

Calorific value, measured in Btu is the amount of chemical energy stored in a coal that is released as thermal energy upon combustion. It is directly related to rank

Vitrinite is a type of maceral. Vitrinite reflectance can be used as an indicator of maturity in hydrocarbon source rocks

 COARSE COAL
 >25.0mm (≈1 inch)

 SMALL COAL
 25.0-3.0mm

 FINE COAL
 < 3.00mm (0.12 inch)</td>

 ULTRA FINE COAL
 < 0.15mm (0.006 inch)</td>

Standard Screen Sizes										
U.S.	. Standard S	ieve	W.S. Tyler Sieve							
Mesh	Inches	Millimeters	Mesh	Mesh Inches						
20	0.033	0.84	20	0.033	0.83					
30	0.023	0.59	28	0.023	0.59					
40	0.0165	0.42	35	0.016	0.42					
50	0.0117	0.30	48	0.0116	0.30					
60	0.0098	0.25	60	0.0097	0.25					
100	0.0058	0.149	100	0.0058	0.15					
140	0.0041	0.105	150	0.0041	0.10					
200	0.0029	0.074	200	0.0029	0.074					
325	0.0017	0.044	325	0.0017	0.043					

ASTM-E1 lists typical screen sizes as 80, 100, 120, 140, 170, 200, 230, 270, 325, <u>400</u>. Source: <u>http://www.barringer1.com/dec00prb.htm</u>

Map of southwestern Indiana showing the heating value (dry basis) of the Danville coal.

Less than 10,500 Btu/lb 10,500 to 11,000 Btu/lb 11,000 to 11,500 Btu/lb 11,500 to 12,000 Btu/lb 12,000 to 12,500 Btu/lb 12,500 to 13,000 Btu/lb 13,000 to 13,500 Btu/lb Greater than 13,500 Btu/lb

Danville coal absent

Data points

Higher heat value in Knox County than in Posey County

HEATING VALUE (Btu/lb dry) OF THE INDIANA DANVILLE COAL

The heating value shows the amount of energy that is in the coal & is **the most important coal parameter** for economic benefits & highest engineering efficiencies

Higher heat value in Knox County than in Posey. Indiana & Midwest coals have high energy values

Source: M. Mastalerz, A Drobniak, J. Rupp and N. Shaffer, "Assessment of the Quality of Indiana coal for Integrated Gasification Combined Cycle Performance (IGCC)', Indiana Geological Survey, Indiana University, June 2005

Map of southwestern Indiana showing the total sulfur content (dry basis) of the Springfield coal.

Sulfur content in Gibson County, for Springfield coal, varies from 0.5% to 4.0%

SULFUR VALUE OF THE INDIANA SPRINGFIELD COAL

Source: M. Mastalerz, A Drobniak, J. Rupp and N. Shaffer, "Assessment of the Quality of Indiana coal for Integrated Gasification Combined Cycle Performance (IGCC)', Indiana Geological Survey, Indiana University, June 2005

Map of southwestern Indiana showing the ash content (dry basis) of the Springfield coal.

Map scale

0 10 miles 1 : 1,000,000

ASH YIELD (Weight %, dry) OF THE INDIANA SPRINGFIELD COAL

Midwest coals have ash yields of **3.3% to 11.7%** & average values for Indiana are about **9.4%**

Source: M. Mastalerz, A. Drobniak, J. Rupp and N. Shaffer, "Assessment of the Quality of Indiana coal for Integrated Gasification Combined Cycle Performance (IGCC)', Indiana Geological Survey, Indiana University, June 2005

INDIANA & POWDER RIVER BASIN COAL

	Indiana coal	PRB coal
Moisture	10 -12%	~ 28%
Volatile matter	~ 40%	higher
Heating value	11,386 Btu/lb	Btu/lb 8,088
Ash content	9.4%	7.6%
AFT (flow, Reduction)	Need more data	?
Slag viscosity ~1400°C	Need more data	?
Char reactivity	Very few data Less reactive (higher T needed?)	More reactive because of more volatiles?
Sulfur	3.13%	0.72%
Chlorine	0.05%	0.01%

Source: M. Mastalerz, A. Drobniak, J. Rupp and N. Shaffer, "Assessment of the Quality of Indiana coal for Integrated Gasification Combined Cycle Performance (IGCC)', Indiana Geological Survey, Indiana University, June 2005

INDIANA COAL BED CHARACTERISTICS

			DANV	ILLE			HYMERA			SPRINGFIELD			SEELYVILLE			LOWER BLOCK					
		Min.	Max.	Ave	n	Min.	Max.	Ave	n	Min.	Max.	Ave	n	Min.	Max.	Ave	n	Min.	Max.	Ave	n
	M [ar]	1.9	28.2	11.3	253	0.8	23.5	10.3	134	0.5	34.7	9.9	654	0.8	29.2	9.9	81	0.7	27.1	13.8	139
(L-0-	A [dry]	4.9	41.1	13.0	255	6.8	72.7	14.5	135	4.9	54.2	12.2	663	6.7	35.6	14.9	88	4.1	31.0	9.0	148
	S [tot, dry]	0.33	7.62	2.65	163	1.20	5.34	3.10	36	0.30	12.19	3.27	443	2.50	9.84	5.02	28	0.55	7.0	1.36	111
	Btu [dry]	7651	17314	13050	253	2520	13734	12042	134	8362	20648	13214	663	8494	13810	12149	83	9677	14702	13267	147
	FC [dry]	32.0	58.2	48.4	131	11.7	54.0	46.7	110	29.0	70.7	48.0	308	19.0	61.1	44.4	73	35.5	59.5	52.6	93
	VM [dry]	26.9	46.1	39.1	131	15.6	45.8	38.5	110	19.9	62.0	40.9	308	31.2	65.4	41.4	73	33.5	47.5	38.5	94
	Slag viscosity temp. (°F)	2156	2900	2559	30	2150	2900	2421	15	2150	2720	2345	41	2150	2630	2273	9	2150	2900	2649	38
	Cl [%]	0.01	0.10	0.03	25	0.02	0.07	0.04	23	0.01	0.24	0.15	31	0.08	0.17	0.11	3	0.01	0.06	0.02	42
	SiO ₂ [%]	31.0	60.0	48.3	34	17.0 0	55.00	39.13	20	21.0	53.0	38.6	48	19.0	45.0	31.0	14	0.4	61.7	47.2	39
	Al ₂ O ₃ [%]	14.0	26.0	20.9	34	9.10	28.40	18.00	20	9.2	28.0	18.2	48	8.5	25.0	17.2	14	16.4	34.0	25.3	39
	Fe ₂ O ₃ [%]	3.5	37.0	16.3	34	4.60	41.00	22.95	20	6.5	49.0	23.3	48	9.2	55.0	35.8	14	3.3	47.2	15.1	39
	CaO [%]	0.5	10.0	2.9	34	0.43	27.00	4.80	20	0.3	16.0	4.3	48	0.5	8.2	3.1	14	0.5	7.1	1.9	39
	MgO [%]	0.6	1.7	1.2	34	0.37	1.50	0.85	20	0.3	1.4	0.8	48	0.4	0.9	0.5	14	0.3	1.0	0.6	39
	SiO ₂ / Al ₂ O ₃	1.75	2.73	2.31	34	1.60	2.93	2.22	20	1.46	2.59	2.16	48	1.44	2.42	1.85	14	0.02	2.52	1.89	39
	Fe ₂ O ₃ + CaO	4.01	38.50	19.26	34	5.12	42.00	27.75	20	7.60	53.80	27.42	48	10.4	58.0	38.84	14	4.80	47.66	16.51	39
	Silica ratio*	0.44	0.92	0.71	34	0.28	0.90	0.58	20	0.30	0.86	0.58	48	0.25	0.80	0.45	14	0.02	0.92	0.73	39
	AFTR INIT	2095	2540	2275	12	-			-	2095	2103	2099	2	es.	ı.	2185	1	1970	2800	2430	28
	AFTR SOFT	2155	2610	2375	12	Ŧ		-	-	2131	2151	2141	2	×	-	2275	1	2040	2800	2477	28
	AFTR HEM	2210	2665	2436	12	-	-	1	-	2181	2187	2184	2	4	1	2353	1	2080	2800	2525	28
	AFTR FINAL	2250	2735	2502	12	-	4	<u>.</u>	а,	2208	2232	2220	2	4		2425	1	2170	2800	2558	26
	AFTO INIT	2340	2705	2535	12	-		-	1. 	(157)	-	2528	1		-	2668	1	2425	2740	2578	9
	AFTO SOFT	2370	2730	2570	12	-	-	ж.	-	1.00		2576	1	÷	-	2701	1	2470	2765	2589	7
	AFTO HEM	2395	2765	2594	12	-	-	-	-		-	2596	1	-	-	2716	1	2495	2780	2608	7
	AFTO FINAL	2415	2795	2626	12	-	-	3	-	-	-	2611	1	4	÷.	2728	1	2540	2800	2638	7

Source: M. Mastalerz, A. Drobniak, J. Rupp and N. Shaffer, Indiana Geological Survey, Indiana University, 2008

EFFECT OF COAL QUALITY ON HEAT RATE & CAPITAL COST

PC = Pulverized Coal, IGCC = Integrated Gasification Combined Cycle

Source: "Economic Analysis of New Coal Fired Generation Options", George S. Booras et al, EPRI, Palo Alto, 2004

PURDUE WADE PLANT

	%	%	Btu/lb	Btu	/lb	%	lbs
	Moisture	Ash As Rec	As Rec	Dry basis		Sulfur As Rec	Sulfur per MBtu
Stoker	15.74	7.96	11,146	13,224		1.02	1.77
CFB	14.73	10.27	10,870	12,7	733	2.38	4.27
				3			
	٥F		UG/(G		UG/G	UG/G
	<i>⁰F</i> Fusion	Grind	UG/0 Mercu	G Iry		UG/G D4208	UG/G D6721
	<i>⁰F</i> Fusion Temp	Grind Index	UG/0 Mercu	G Iry	C	UG/G D4208 Shlorine	UG/G D6721 Chlorine
Stoker	<i>°F</i> Fusion Temp 2490	Grind Index 57	UG/0 Mercu 0.05	G Iry	C	UG/G D4208 Chlorine 204	UG/G D6721 Chlorine 128

CFB = Circulating Fluidized Bed boiler technology - environmentally acceptable technology – burns wide range of solid fuels to generate steam & electricity power ranging from 5 MW to 250 MW
 Stoker = Stoker Boiler Systems - used on small boilers for over a century. They use a lump coal feed (UG/G = micro grams per gram)

PURDUE WADE PLANT

Generation Approx 40 MW with <u>3 generators</u> 29 MW turbine generator 10 MW turbine generator 1.7 MW diesel generator

& <u>9 centrifugal chillers</u>

Indiana coal is the prime fuel source for the Wade Plant. During fiscal year 2005-06, Wade consumed 48,130 Ton of high-sulfur coal, 118,509 Ton of low-sulfur coal, 10,838 Ton of limestone, and 466,935 Therms of natural gas for an average fossil fuels delivered cost of approximately \$2.452/MBtu

COKE & PETCOKE

<u>Coke</u> is a solid carbonaceous residue derived from **low-ash**, **low-sulfur** <u>bituminous coal</u> from which the volatile constituents are driven off by baking in an oven without oxygen at

temperatures as high as 1,000 °C (1,832 °F) so that the fixed carbon & residual ash are fused together. Coke is used as a fuel & as a reducing agent in smelting iron ore in a <u>blast furnace</u>. Coke from coal is grey, hard, & porous & has a heating value of 24.8 MBtu/ton (29.6 MJ/kg). Byproducts of this conversion of coal to coke include <u>coal tar</u>, <u>ammonia</u>, light oils, and "<u>coal-gas</u>"

Petroleum coke is the solid residue obtained in <u>oil refining</u>, which resembles coke but contains too many impurities to be useful in metallurgical applications

1000&sz=434&hl=en&start=102&um=1&tbnid=AcfQD7qmScAhrM:&tbnh=110&tbnw=149&prev=/images%3Fq%3Dcoal%2Bphotos%26start%3D90%26ndsp%3D18%26 svnum%3D10%26um%3D1%26hl%3Den%26sa%3DN