Indiana Center for Coal Technology Research
Northwest Coal Corridor

Thomas F. Brady, Ph.D.
July 24, 2012
Project History

• Premise of the Project - There is no direct North/South rail route
 – Analysis of coal movement **within** Indiana
 • 10 mines, 10 power plants
 • Indiana Coal Corridor
 – Integration of rail with water
 • Port of Indiana
 • Ohio River
Project Methodology

• Use a known route as a base scenario
• Construct experimental routes using intuition
• Supplement existing routes with abandoned routes if necessary
• Use computer simulation to generate cycle times for experimental routes
 – Account for variability
 – Account for congestion, breakdowns, right of ways, etc.
Project Assumptions

• Linton, IN was used as the origination point of Indiana coal

• Trains are 110 car, 286,000 pound capacity
Constructing Rail Routes

• Segments between Stations
 – Mileage
 – Active/Owner
 – Trackage Rights
 – Signaling Systems
 – # tracks on mainline
 – Density
 – Class
Class

- Federal Railroad Administration Classification System for Train Speed based on quality of track

<table>
<thead>
<tr>
<th>Class</th>
<th>Max Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
</tr>
</tbody>
</table>
Density

- Classification based upon millions of gross ton miles per year
Ideal Route

• Minimize
 – Number of Owners
 – Mileage
 – Density

• Maximize
 – Class
Part I
Indiana Coal to Wheatfield

• Research Question: How do we get southern Indiana coal to northern Indiana?
Routes
Indiana Results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Miles</th>
<th>Segments</th>
<th>Operators</th>
<th># RW's</th>
<th>% RW</th>
<th>% Abandon</th>
<th>Signals</th>
<th>Main %</th>
<th>Density</th>
<th>Class</th>
<th>Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - State Line</td>
<td>209</td>
<td>29</td>
<td>4</td>
<td>3</td>
<td>65%</td>
<td>0%</td>
<td>4</td>
<td>24%</td>
<td>3.86</td>
<td>1.18</td>
<td>51.4</td>
</tr>
<tr>
<td>B - Central Route</td>
<td>217</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>47%</td>
<td>0%</td>
<td>5</td>
<td>16%</td>
<td>2.62</td>
<td>1.17</td>
<td>53.0</td>
</tr>
<tr>
<td>C - Gosport Link</td>
<td>205</td>
<td>16</td>
<td>5</td>
<td>2</td>
<td>44%</td>
<td>6%</td>
<td>3</td>
<td>0%</td>
<td>1.68</td>
<td>1.31</td>
<td>55.9</td>
</tr>
<tr>
<td>D - Gosport - Medaryville</td>
<td>185</td>
<td>16</td>
<td>4</td>
<td>2</td>
<td>31%</td>
<td>19%</td>
<td>3</td>
<td>0%</td>
<td>1.38</td>
<td>1.26</td>
<td>48.6</td>
</tr>
<tr>
<td>E - Handy Link</td>
<td>199</td>
<td>24</td>
<td>5</td>
<td>3</td>
<td>38%</td>
<td>25%</td>
<td>4</td>
<td>0%</td>
<td>1.9</td>
<td>1.06</td>
<td>44.0</td>
</tr>
</tbody>
</table>
Route Mileage

Miles

<table>
<thead>
<tr>
<th>Route</th>
<th>Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - State Line</td>
<td>210</td>
</tr>
<tr>
<td>B - Central Route</td>
<td>220</td>
</tr>
<tr>
<td>C - Gosport Link</td>
<td>200</td>
</tr>
<tr>
<td>D - Gosport - Medaryville</td>
<td>180</td>
</tr>
<tr>
<td>E - Handy Link</td>
<td>200</td>
</tr>
</tbody>
</table>
Route Cycle Time

![Bar Chart: Cycle Time]

- A - State Line
- B - Central Route
- C - Gosport Link
- D - Gosport Medaryville
- E - Handy Link
Average Route Class

Class

<table>
<thead>
<tr>
<th>Route</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - State Line</td>
<td>1.3</td>
</tr>
<tr>
<td>B - Central Route</td>
<td>1.2</td>
</tr>
<tr>
<td>C - Gosport Link</td>
<td>1.4</td>
</tr>
<tr>
<td>D - Gosport - Medaryville</td>
<td>1.4</td>
</tr>
<tr>
<td>E - Handy Link</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Average Route Density

![Average Route Density Chart]

- A - State Line
- B - Central Route
- C - Gosport Link
- D - Gosport - Medaryville
- E - Handy Link

Density

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

A - State Line B - Central Route C - Gosport Link D - Gosport - Medaryville E - Handy Link
Part II
Indiana Coal to Michigan

• Research Question: How do we get coal from southern Indiana to select Michigan destinations
Michigan and Coal

• Michigan has 88 coal-fired power plants at 33 locations, producing 12,891 megawatts
• 49 are larger than 50MW
 – Monroe = 3280MW
 – St. Clair = 1547MW
 – Campbell = 1540MW
 – Belle River = 1395MW
• These plants consume approximately 33,120,930 short tons of coal per year

Tbradyjr@pnc.edu
Where Does Michigan Get It’s Coal From?

![Chart showing coal distribution]

- **Great Lakes**
- **Truck**
- **Rail**
A Different Perspective

Montana (27%)
Colo (1%)
Wyoming (54%)
Illinois (5%)

Ohio (5%)
Penn (5%)
WV (8%)

K Y (9%)

tbradyjr@pnc.edu
Michigan Coal Consumption Pattern

![Bar Chart Showing Michigan Coal Consumption Pattern]

- The chart illustrates the coal consumption pattern in Michigan over a period from 2011 to 2018.
- Each bar represents a year, with the height indicating the amount of coal consumed.
- A significant peak is observed in 2017, followed by a decline in subsequent years.

Contact: tbradyjr@pnc.edu
Plants Chosen for this Study

• Close to the Western side of Michigan
• Close to water
• Near Indiana rail interface
 – Filer, Manistee
 – Cobb, Warren, Muskegon
 – Sims, Campbell, Grand Haven
 – Eckert, Simon, Erickson, Lansing
 – DeYoung, Holland
Supplying Michigan with Indiana Coal

- **3 Main Gateways**
 - West - New Buffalo (CSX)
 - Central – South Bend (CN)
 - East – Vistula (Norfolk Southern)

- **3 Indiana Routes**
 - West – State Line, Griffith, MC
 - Central – Gosport – Medaryville, MC
 - East – Indianapolis, Goshen, South Bend
Routes

- Filer
- Cobb, Warren
- Campbell, DeYoung
- Sims
- Eckert, Simon Erickson

A
B
C
D
E

tbradyjr@pnc.edu
Michigan Results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Miles</th>
<th>Segments</th>
<th>Operators</th>
<th># RW's</th>
<th>% RW</th>
<th>% Abandon</th>
<th>Signals</th>
<th>Main %</th>
<th>Density</th>
<th>Class</th>
<th>Cycle Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - DeYoung</td>
<td>349</td>
<td>49</td>
<td>6</td>
<td>2</td>
<td>57%</td>
<td>0%</td>
<td>5</td>
<td>24%</td>
<td>3.9</td>
<td>1.16</td>
<td>84.4</td>
</tr>
<tr>
<td>A - Campbell</td>
<td>359</td>
<td>50</td>
<td>6</td>
<td>2</td>
<td>56%</td>
<td>0%</td>
<td>5</td>
<td>24%</td>
<td>3.82</td>
<td>1.16</td>
<td>86.8</td>
</tr>
<tr>
<td>A - Sims</td>
<td>370</td>
<td>51</td>
<td>7</td>
<td>2</td>
<td>55%</td>
<td>0%</td>
<td>5</td>
<td>24%</td>
<td>3.74</td>
<td>1.22</td>
<td>94.1</td>
</tr>
<tr>
<td>A - Cobb/Warren</td>
<td>383</td>
<td>53</td>
<td>7</td>
<td>2</td>
<td>53%</td>
<td>0%</td>
<td>5</td>
<td>23%</td>
<td>3.64</td>
<td>1.27</td>
<td>101.4</td>
</tr>
<tr>
<td>B - DeYoung</td>
<td>325</td>
<td>34</td>
<td>6</td>
<td>3</td>
<td>18%</td>
<td>12%</td>
<td>4</td>
<td>6%</td>
<td>2.16</td>
<td>1.29</td>
<td>87.4</td>
</tr>
<tr>
<td>B - Campbell</td>
<td>335</td>
<td>35</td>
<td>6</td>
<td>3</td>
<td>17%</td>
<td>11%</td>
<td>4</td>
<td>6%</td>
<td>2.13</td>
<td>1.29</td>
<td>90.1</td>
</tr>
<tr>
<td>B - Sims</td>
<td>346</td>
<td>36</td>
<td>7</td>
<td>3</td>
<td>17%</td>
<td>11%</td>
<td>4</td>
<td>6%</td>
<td>2.09</td>
<td>1.34</td>
<td>96.7</td>
</tr>
<tr>
<td>B - Cobb/Warren</td>
<td>359</td>
<td>38</td>
<td>7</td>
<td>3</td>
<td>16%</td>
<td>11%</td>
<td>4</td>
<td>5%</td>
<td>2.05</td>
<td>1.4</td>
<td>104.8</td>
</tr>
<tr>
<td>C - DeYoung</td>
<td>391</td>
<td>35</td>
<td>8</td>
<td>3</td>
<td>9%</td>
<td>0%</td>
<td>4</td>
<td>14%</td>
<td>2.97</td>
<td>1.53</td>
<td>124.8</td>
</tr>
<tr>
<td>C - Campbell</td>
<td>400</td>
<td>36</td>
<td>8</td>
<td>3</td>
<td>8%</td>
<td>0%</td>
<td>4</td>
<td>14%</td>
<td>2.92</td>
<td>1.51</td>
<td>125.0</td>
</tr>
<tr>
<td>C - Sims</td>
<td>411</td>
<td>37</td>
<td>9</td>
<td>3</td>
<td>8%</td>
<td>0%</td>
<td>4</td>
<td>14%</td>
<td>2.87</td>
<td>1.55</td>
<td>132.9</td>
</tr>
<tr>
<td>C - Cobb/Warren</td>
<td>424</td>
<td>38</td>
<td>9</td>
<td>3</td>
<td>8%</td>
<td>0%</td>
<td>4</td>
<td>13%</td>
<td>2.81</td>
<td>1.6</td>
<td>141.5</td>
</tr>
<tr>
<td>D - Lansing</td>
<td>368</td>
<td>28</td>
<td>6</td>
<td>2</td>
<td>7%</td>
<td>0%</td>
<td>9</td>
<td>32%</td>
<td>3.58</td>
<td>1.51</td>
<td>115.9</td>
</tr>
<tr>
<td>D - Filer</td>
<td>462</td>
<td>32</td>
<td>7</td>
<td>3</td>
<td>9%</td>
<td>0%</td>
<td>4</td>
<td>13%</td>
<td>2.29</td>
<td>1.86</td>
<td>179.2</td>
</tr>
<tr>
<td>E - Lansing</td>
<td>352</td>
<td>33</td>
<td>6</td>
<td>7</td>
<td>21%</td>
<td>12%</td>
<td>12</td>
<td>36%</td>
<td>3.28</td>
<td>1.22</td>
<td>88.6</td>
</tr>
<tr>
<td>E - Filer</td>
<td>445</td>
<td>37</td>
<td>8</td>
<td>8</td>
<td>22%</td>
<td>11%</td>
<td>7</td>
<td>19%</td>
<td>2</td>
<td>1.65</td>
<td>153.1</td>
</tr>
</tbody>
</table>

`tbradyjr@pnc.edu 29`
Route Mileage

Miles

<table>
<thead>
<tr>
<th></th>
<th>A - DeYoung</th>
<th>A - Campbell</th>
<th>A - Cobb/Warren</th>
<th>B - DeYoung</th>
<th>B - Campbell</th>
<th>B - Cobb/Warren</th>
<th>C - DeYoung</th>
<th>C - Campbell</th>
<th>C - Cobb/Warren</th>
<th>D - Lansing</th>
<th>D - Filer</th>
<th>E - Lansing</th>
<th>E - Filer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles</td>
<td></td>
</tr>
</tbody>
</table>
Route Cycle Time

Cycle Time (Hours)

- A - DeYoung
- A - Cobb/DeYoung
- A - Sims
- B - Cobb/DeYoung
- B - Cobb/Campbell
- B - Sims
- B - Cobb/Warren
- C - DeYoung
- C - Cobb/DeYoung
- C - Cockburn
- D - Cobb/Warren
- E - Filer
- E - Lansing
- D - Lansing
- D - Filer
- E - Filer
- A - Campbell
- B - Campbell
- C - Campbell
- D - Lansing
- E - Filer
- E - Lansing
Average Route Class

Class

A. De Young
A. Campbell
A. Cobb/Warren
B. De Young
B. Campbell
B. Cobb/Warren
C. De Young
C. Campbell
C. Cobb/Warren
D. Lansing
D. Filer
E. Lansing
E. Filer

Class
Average Route Density

Density

A. DeYoung A. Campbell A. Cobb/Warren B. DeYoung B. Campbell B. Sims C. Cobb/Warren C. DeYoung C. Campbell C. Sims D. Lansing D. Filer E. Lansing E. Filer

Density
Operational Aspects of Indiana to Michigan Coal Transport

• Assumptions
 – Fully supply Campbell
 – Unit train of 14,000 tons
 – Cycle times from simulation model

• # of Unit Trains Needed
 – Route A, 4
 – Route B, 4
 – Route C, 5
Summary

• The lack of a Class 4 or above true North/South rail route through Indiana contributes to costly or non-existent business opportunities
• Abandoned routes formerly provided North/South access
• Marginal improvement in routes can make a large financial impact due to the scale of coal transportation/consumption
• A combined water route using the Port of Indiana may enable export opportunities as well