Oxy-Fuel Coal Combustion

Prof. Steve Son
sson@purdue.edu

Prof. Yuan Zheng
zhengy@purdue.edu

Eric Miklaszewski (Student)
Options for Clean Coal

Three front runners:

- **Oxygen combustion (Oxyfuel)**
 - Concentrated CO$_2$ in products

- **Amine (or others) scrubbing** for new or existing plants
 - Extracts the CO$_2$ from the flue gas using a regenerable sorbent-catalyst such as momoethanolamine (or MEA)

- **Integrated Gasification Combined Cycle (IGCC)**
 - Also concentrates CO$_2$
 - Attractive approach, but challenges include complexity of operation

"**Some current studies show oxygen combustion as the least costly while others lean toward IGCC, indicating that the jury is still out.**" (Williams et al., BR-1779, 2006)
What is oxyfuel combustion?

- **Oxyfuel**
 - Pure oxygen as oxidizer (often diluted with flue gas)
 - Reduces or eliminates NOx (no Nitrogen in oxidizer flow)

- Increases CO$_2$ concentration
 - Easier to recover

Could be used in retrofit coal plants

From R Gupta
Progress of Project

- Literature Reviewed
- Radiation analysis in a pilot scale oxy-fuel boiler firing natural gas and coal in Jupiter’s pilot scale burner
- Construction of particle burner
- Initial combustion results
Radiation Measurements - Motivation

- Radiative Heat Transfer
 - Dominant heat transfer mode in boiler furnace
 - Non-gray body behavior (spectral dependence)

- Temperature Measurements in Oxy-Fuel Boilers
 - Pilot scale
 - Above 3,000 K in Jupiter burner
 - Challenging to measure
Objectives

- Measure spectral radiation intensities of a pilot-scale oxy-fuel boiler at various locations (by Jupiter engineers)

- Analyze measured radiation data

- Estimate temperate profile at one cross-section of the boiler furnace using inverse radiation interpretation
Experimental Methods

- **The Pilot Scale Boiler**
 - Doosan Backcock 80 MBtu/hr boiler
 - Four Maxson 10 MBtu/hr
 - Total heating rate during tests: < 30 MBtu/hr

- **Test Matrix**
 - HT oxy-natural gas without CO$_2$ recycling
 - HT oxy-natural gas with CO$_2$ recycling (blanket)
 - LT oxy-natural gas with CO$_2$ recycling (synthetic air)
 - Air firing natural gas
 - HT oxy-coal without CO$_2$ recycling

- **Fast Infrared Array Spectrometer (FIAS)**
 - Portable
 - Staggered PbSe linear array sensor cooled by TEC
 - 160 wavelengths from 1.4 to 4.8 μm
 - Scan frequency: 6,250 Hz
 - Acquisition frequency: 1,320 Hz
From Jupiter Oxygen
Arrangement of spectral radiation intensity measurements
Comparison of estimated temperature profiles

- Peak temperatures of HT oxy-fuel flames are MUCH higher
- Temperatures of LT oxy-fuel air-firing flames are comparable
- Gas temperature near the wall of the HT oxy-fuel without FGR configuration is the highest
Results and Discussion

Comparisons of measured and predicted I_λ

- Test 23: HT oxy-fuel without FGR
- Test 24: HT oxy-fuel with FGR (CO$_2$ blanket)
Results and Discussion

Comparisons of measured and predicted I_λ

- Test 30: air firing
- Test 34: LT oxy-fuel with FGR (synthetic air)
Results and Discussion

Comparison of I_λ of oxy-coal and oxy-NG flames

Measured I_λ of oxy-coal flame
- Continuum radiation from particles
- Much smaller dips at 2.3, 2.7 and 4.0 μm
- Big dip at 4.2 μm

- Same measurement location
- Slightly different heat rate
- Maybe different flame length
- Maybe different flame temperature
Combustion Studies at Purdue

- Constant volume or pressure ignition and combustion
 - Flame and ignition characterization studies
 - Pollutant concentrations
 - RFG/O₂% optimization
 - Comparisons with Jupiter pilot reactor
 - Indiana coals considered

Can we stabilize O₂/CO₂/Coal flame with lower O₂ concentration?
Measurements:

- Flame Speed Measurements
- Radiation measurements
 - Temperature Profile of Flame using Inverse Flame Measurement Technique

While Varying:

- Initial Gasses (Oxygen, Nitrogen, Carbon Dioxide)
- Fuel/Oxidizer Ratio (Amount of Coal)
- Coal Particle Size
- Coal Type
Recent Milestones

- Repeatable combustible dust cloud combustion
- Compared with literature results
- Classification of Particle Size (Malvern Testing)
- Collected a few of coal types
- Developed Control System to run dust Cloud experiments
Types of Coal to be Tested

<table>
<thead>
<tr>
<th>Coal Type</th>
<th>Indonesian Coal</th>
<th>Illinois Basin #6</th>
<th>Indiana Coal (Billings Mine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Classification</td>
<td>Bituminous (low sulfur)</td>
<td>Bituminous</td>
<td>*Bituminous (medium Volatile)</td>
</tr>
<tr>
<td>Ultimate Analysis (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>73.70%</td>
<td>68.30%</td>
<td>81.40%</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>5.20%</td>
<td>5.00%</td>
<td>4.80%</td>
</tr>
<tr>
<td>Oxygen</td>
<td>18.80%</td>
<td>13.80%</td>
<td>4.60%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>1%</td>
<td>1.30%</td>
<td>1.60%</td>
</tr>
<tr>
<td>Sulfur</td>
<td>0.10%</td>
<td>3.50%</td>
<td>0.70%</td>
</tr>
<tr>
<td>Ash</td>
<td>1.30%</td>
<td>8.10%</td>
<td>6.90%</td>
</tr>
<tr>
<td>Typical Proximate Analysis (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture</td>
<td>16.12%</td>
<td>10.10%</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>1.06%</td>
<td>7.30%</td>
<td>6.90%</td>
</tr>
<tr>
<td>Volatile</td>
<td>42.59%</td>
<td>35.90%</td>
<td>29.20%</td>
</tr>
<tr>
<td>Fixed Carbon</td>
<td>40.23%</td>
<td>46.70%</td>
<td>63.90%</td>
</tr>
</tbody>
</table>

Analysis of Indiana Coal Billings Mine is estimated on normal composition of coal from that area
Classification of Particle Sizing

Measured Size Distribution of Coal Particle Diameter Using Malvern Mastersizer 2000
Using Sieves we will further classify the Coal into bins of:

- $>106 \ \mu m$
- $106 \ \mu m - 75 \ \mu m$
- $75 \ \mu m - 53 \ \mu m$
- $53 \ \mu m - 25 \ \mu m$
- $< 25 \ \mu m$
Cloud Burner Experiments

Experiment A
Indonesian coal:
50% O₂
50% CO₂
.539 kg/m³

Experiment B
Indonesian coal:
50% O₂
50% CO₂
.539 kg/m³
Particle size < 25μm
Cloud Burner Experiments

50% Oxygen and 50% CO₂, 0.539 kg/m³ amounts of a similar Bituminous coal

Suda reports ~1.3 m/s
Purdue Study ~1.7 m/s
Size, O₂ conc. Differences, etc.

Fig. 10. Effect of CO₂ on flame propagation velocity Coal A, 50 μm.
Bunsen Particle Burner (PSU)

Using a low-flow natural gas pilot flame we can stabilize the coal/oxygen Bunsen burner.

Also trying hot-wire Stabilization.
- Radiation measurements in pilot burner
- New particle cloud combustor built
 - Initial laboratory measurements made
- Obtained pulverized coal for studies and characterized
- Bunsen particle burner
 - Being adapting to coal combustion
 - Complements particle cloud experiment
Future Work

- Conduct parametric studies of laboratory scale oxy-coal flames
 - Various oxy-coal configurations
 - Spectral radiation intensity measurements from NIR to IR
 - Inverse estimates of temperature and species concentrations
 - Compare to pilot scale
Acknowledgements

This work was funded by Jupiter Oxygen and CCTR (Indiana)

The radiation data were acquired by Jupiter Engineers, Steven Neid, Cassidy Jax, and Brian Patrick
Appendix: Temperature Estimate

We estimated the temperature profile using the following major assumptions,

1. Turbulent effects are not considered as a first approximation
2. Negligible radiation from the wall
3. Constant species (CO\(_2\), H\(_2\)O, O\(_2\), etc.) concentrations. The species concentrations were obtained by thermodynamics calculations using HYSYS (Jupiter’s calculation)
4. The temperature profile was described as the following,

\[
T(r) = T_p \exp \left[-\left(\frac{r - r_p}{c} \right)^2 \right] + T_b
\]

where the normalized position, \(r \), is zero at the center and unity at the water wall boundary. The four parameters (\(T_b, T_p, c \), and \(r_p \)) are related to the gas temperature at the boundary (\(T_b \)), the normalized location of the flame front (\(r_p \)), the flame front temperature (\(T_p + T_b \)), and the gas temperature at the flame center. These parameters were first guessed and then determined when the calculated \(I_\lambda \) based upon these parameters were optimized to yield the best fit to the measured \(I_\lambda \) at four (at least) specifically chosen wavelengths.
Test Arrangement

Boiler Plan View

Three traversing type K, grounded junction TC's maximum insertion length 5 ft located on 36° vertical centers HVT radiant shielded type TC with gas sampling port.
