Summary of Research Activities

Eckhard A. Groll
Professor of Mechanical Engineering
Director of Global Initiatives, Co-Operative Education and Professional Experiences in the School of ME
Interim Director of the Office of Professional Practice

Ray W. Herrick Laboratories
Purdue University
West Lafayette, IN 47907

Main Driving Factors for Research are Energy and Environment
Main Research Thrusts

• **Alternative Technologies** for heat pumping, air conditioning, refrigeration, drying, etc.:
 – Analysis of transcritical CO$_2$-cycle technology (some details later on)
 – Evaluation of thermoelectric refrigeration and air conditioning
 – Stirling cycle coolers
 – Ericsson cycle coolers
 – Air-cycle technology (reversed Brayton cycle) for transport air conditioning and drying applications.
 – Combined absorption/compression cycle (vapor compression cycle with solution circuit) utilizing working pairs such as ammonia/water, CO$_2$/Acetone, and HFC-23/DEGDME.

Main Research Thrusts, cont’d

• **Improved Components**, such as compressors, heat exchangers, expansion devices, distributors, etc.:
 – Modeling, analysis, and testing of positive displacement compressors (some details later on)
 – Evaluation of scroll or screw compressors for the combined compression of refrigerant vapor and solution in absorption/compression cycles
 – Modeling, analysis, and testing of two-phase work output expansion machines
 – Development of an improved method for refrigerant flow distribution
 – Analysis and design of heat exchangers
 – Heat transfer and pressure drop characteristics during in-tube gas-cooling, condensation, and evaporation of new/substitute refrigerants
 – Performance evaluation and investigation of the fouling behavior of air-to-refrigerant heat exchangers
Main Research Thrusts, cont’d

- **Improved Systems**, (Air Conditioners and Heat Pumps, Chillers, Refrigerators, Furnaces, etc.) through modeling optimization, reliability studies:
 - Improved steady-state design models for air conditioners and heat pumps (some details later on)
 - Transient models of unitary systems and chillers
 - HFCs and HFC mixtures as a replacement for R-22 in unitary air conditioning and heat pumping equipment
 - Hydrocarbons and their mixtures as a replacement for HCFC-22 in unitary equipment and as a replacement for R-134a in domestic refrigerator/freezers
 - Secondary loop refrigeration systems using ammonia or hydrocarbons for commercial and unitary applications
 - A cost-based methodology for determining optimal refrigerants
 - Impact of heat exchanger fouling on system performance

Main Research Thrusts, cont’d

- **Miniature-Scale Refrigeration Systems (MSRS)** for electronics cooling:
 - Performance evaluation of miniature-scale refrigeration systems for electronics cooling (some details later on)
 - Modeling, analysis, design and testing of miniature-scale rotary and linear compressors for electronics cooling
 - Evaluation of miniature-scale diaphragm compressors for electronics cooling
Two Large Environmental Chambers
- Testing of AC, HP and Refrig. Systems
- -20°C to +50°C, < 5-ton equipment
- Steady-state and cyclic testing of existing, modified, or new equipment designs

90-ton Centrifugal Chiller
- Automated control of boundary conditions

Heat Exchanger Test Facility
- Testing of coiling coils, heating coils, evaporators, condensers
- Capable of controlled heat exchanger fouling

Compressor Load Stands
- CO₂, R-22, R-410a

Alternative Refrigeration Technologies: Transcritical CO₂ Cycle

CO₂ Compressor Load Stand:

Performance of CO₂ Prototype Compressor:

\[\text{ov.Is.eff} = -2.78259157 \times 10^{-01} + 8.95484761 \times 10^{-03} \times p_1 - 2.69714368 \times 10^{-02} \times p_1^2 + 9.76968361 \times 10^{-04} \times p_1^3 + 2.55739111 \times 10^{-01} \times p_2 - 2.83526791 \times 10^{-02} \times p_2^2 + 9.86399651 \times 10^{-04} \times p_2^3 + 2.58389357 \times 10^{-02} \times p_1 \times p_2 - 9.84810719 \times 10^{-04} \times p_1^2 \times p_2 - 1.70586490 \times 10^{-04} \times p_1 \times p_2^2\]

\[
\text{DTsh} = 14.6 \text{ K}; \text{ stdev} = 2.3 \text{ K}
\]
Alternative Refrigeration Technologies: Transcritical CO₂ Cycle

Expansion Work Output Machine:

[Diagram showing pressure and enthalpy for different cases]

Improved Components: Scroll Compressor Analysis

Experimental Setup:

Model Validation:

[Graph comparing model predictions with measurements]

Purdue University - School of Mechanical Engineering
Improved Components:
Beard-Pennock Variable-Stroke Compressor (1988)

Concept:

![Diagram of Beard-Pennock Compressor](image)

Predicted Performance:

![Graph showing predicted performance](image)

- Cooling Capacity
- EER

Swept Volume (cm3)

- 3.5
- 4.0
- 4.5
- 5.0
- 5.5

T$_{cond}$ = 40°C & T$_{evap}$ = -15°C

Improved Components:
Refrigerant Flow Distributor Analysis

CFD Modeling of Refrigerant Flow Distribution

Refrigerant Mal-distribution:

![Diagram showing refrigerant mal-distribution](image)
Improved Components:
Air-Side Heat Exchanger Fouling Analysis

Air-side Effective Heat Transfer Coefficient Fouling Factor (Measured):

\[f_h = \frac{100(h_i - h_c)}{h_c} \%
\]

Air-side Pressure Drop Fouling Factors (Measured):

\[f_{dp} = \frac{100(\Delta P_{c,f} - \Delta P_{c,c})}{\Delta P_{c,c}} \%
\]

Improved Systems:
Secondary-Loop Refrigeration Systems

Supermarket Case Study:

<table>
<thead>
<tr>
<th>System Description</th>
<th>COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium Temperature DX (R-22)</td>
<td>2.01</td>
</tr>
<tr>
<td>Low Temperature DX (R-404A)</td>
<td>1.19</td>
</tr>
<tr>
<td>Medium Temperature SL (R-717/HFE)</td>
<td>2.31</td>
</tr>
<tr>
<td>Low Temperature SL (R-717/HFE)</td>
<td>1.56</td>
</tr>
</tbody>
</table>
Target Operating Conditions

- Cooling capacity: ≥ 200W
- Evaporating temperature: 10 to 25°C
- Condensing temperature: 40 to 55°C
- Superheat: 3 to 8°C
- Subcooling: 3 to 10°C
- Ambient temperature: 25 to 45°C

Future Research Opportunities

<table>
<thead>
<tr>
<th>Driving Factors</th>
<th>Research Directions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming</td>
<td>Energy efficiency improvements</td>
</tr>
<tr>
<td>Utility deregulation</td>
<td>Alternative technologies</td>
</tr>
<tr>
<td>Limited generating capacity</td>
<td>Performance monitoring & diagnostics</td>
</tr>
<tr>
<td>Information technologies</td>
<td>Intelligent controls</td>
</tr>
<tr>
<td>Consolidation of service providers</td>
<td>Integrated facility management</td>
</tr>
<tr>
<td>Worker Productivity</td>
<td>Human perception and productivity</td>
</tr>
<tr>
<td>Low-cost sensors & computers</td>
<td>Distributed power generation</td>
</tr>
<tr>
<td>Population Growth</td>
<td>Improved food production, preservation, transportation, and storage</td>
</tr>
<tr>
<td>Food Quality Demands</td>
<td>Small-scale refrigeration systems</td>
</tr>
<tr>
<td>Electronic cooling needs</td>
<td>Low temperature system / cryogenics</td>
</tr>
<tr>
<td>Medical needs</td>
<td></td>
</tr>
</tbody>
</table>

Purdue University - School of Mechanical Engineering