1. Assume that two potentials V and V' that differ by more than a constant give rise to the same electron density for a non-degenerate ground state. Now suppose that Φ is the eigenstate corresponding to V, and that Φ', corresponding to V', must be less than in Φ, and that for the rest, T is the kinetic energy and V-electron repulsion. Now you see that the term with V must cancel out on both sides because is the same for the two. Then the expectation value of R in state Φ, must be less than in Φ', and that for the rest, T is the kinetic energy and V-electron repulsion. Now you see that the term with V' cancels out on both sides.

2. ...Then the expectation value of H prime in Φ prime,

must be less than in Φ.

Write H prime by adding two terms the first one with V prime the next with the rest, T is the kinetic energy and V-electron repulsion. Now you see that the term with V' cancels out on both sides because is the same for the two. Then the expectation value of R in state Φ, must be less than in Φ', and that for the rest, T is the kinetic energy and V-electron repulsion. Now you see that the term with V' cancels out on both sides.

Lyrics and Music by The Suspenders:
Daniel Jensen, Michael Mack, Martin A. Mosquera,
Jonathan Nafziger, Adam Wasserman, Daniel Whitenack.