Research

Our main goal is to gain fundamental understanding regarding the role that electron-electron interactions play in chemistry, and to develop new theoretical tools that help guiding and interpreting experiments where electron correlations are essential. We work on extending the range of applicability of time-dependent density functional methods (TDDFT) to the calculation of energies and lifetimes of resonances, conductance through molecular wires, response of molecules to strong laser fields, and signatures of interaction-induced chaos.

We are also interested in the foundations of chemical reactivity theory (CRT) and understanding the way in which classic chemical concepts like electronegativity and hardness emerge from basic quantum mechanics. Within the framework of TDDFT, we are exploring possible time-dependent extensions of CRT in order to study electron excitation processes at the femtosecond time-scale.

Here are the main lines of current research (click on each for more details):

  ---  Partition Theory  ---

cuttingcake

    ---  Resonances  ---

resonances

 ---  Strong-field Theory  ---

atlas3