



## BIO

Purdue University Ph D student with lab training at the Composites Manufacturing & Simulation Center within the Indiana Manufacturing Institute.

Summer 2014, awarded the Summer Undergraduate Research Fellowship (SURF) at Michigan Technological University. The work's goal was to understand the mechanical properties of graphene nanoplatelet/carbon fiber/epoxy hybrid composites. Tensile tests were conducted to determine the samples' modulus.

Summer 2015, interned at Dow Corning in their Science and Technology division. Studied the separation dynamics of volatile organic compounds using liquid absorption. Trained on digital scanning calorimeter, vapor sorption analyzer, FTR-IR spectroscopy, and gas chromatography in order to characterize the separation. Additionally, designed and constructed the absorbing and desorbing columns (bench scale) used in the study.

## EDUCATION

### Purdue University

Ph.D. Chemical Engineering, 2016–Present

### Michigan Technological University

B.S. Chemical Engineering, 2012–2016

## RESEARCH FOCUS

Material system and manufacturing principles for automated tow/tape placement for complex thermoplastic composite structures

## RESEARCH INTEREST

High throughput manufacturing of continuous fiber, composite, lattice systems.

## PUBLICATIONS

Hadden, C.m., D.r. Klimek-Mcdonald, E.j. Pineda, J.a. King, A.m.

Reichanadter, I. Miskioglu, S. Gowtham, and G.m. Odegard.

"Mechanical Properties of Graphene Nanoplatelet/carbon Fiber/epoxy Hybrid Composites: Multiscale Modeling and Experiments." Carbon 95 (2015): 100-12. Web.

## RESEARCH FIGURE



**Figure 1:** Example of a composite lattice structure.