Experimental Design Principles for Bioinformatics Analyses

Bruce A Craig Department of Statistics Purdue University

My Background

- Professor of Statistics (at Purdue 20+ years)
- Director, Purdue's Statistical Consulting Service (SCS)
 - Free service available to all associated with Purdue
 - Service balances research and teaching
 - Education and training of student consultants (and clients)
 - Improving the quality and productivity of research at Purdue
- Prior to becoming Director, had been involved in the design and analysis of spotted microarrays and QTL analysis in polyploids
- Now just try to keep up with the ever-changing technologies within my SCS role

Importance of experimentation

 "There are three principal means of acquiring knowledge... observation of nature, reflection, and experimentation. Observation collects facts; reflection combines them; <u>experimentation verifies</u> the result of that combination." – Denis Diderot

 "The proper method for inquiring after the properties of things is to <u>deduce them from</u> <u>experiments</u>." – Isaac Newton

Importance of design

- "You can't fix by analysis what you <u>bungled by</u> <u>design</u>." - Light, Singer and Willett
- "To call in the statistician after the experiment is done may be no more than asking him to perform a postmortem examination: he may be able to say what the experiment died of." - Sir Ronald Aylmer Fisher

Importance of design

- "All experiments are designed experiments, it is just that some are poorly designed and some are welldesigned."
- "No experiment is ever a complete failure. It can always be used as a bad example." – Paul Dickson
- "If your experiment needs statistics, you ought to have done a better experiment." - Lord Ernest Rutherford

Experimental Design

- Is <u>NOT</u> simply a statistical issue...
- Requires a combination of
 - Scientific/biological insight
 - Scientific logic Not a one
 - Common sense
 - Planning
 - Statistics
 - Communication skills
 - <u>https://www.youtube.com/watch?v=PbODigCZqL8</u>

Not a one person task!!!

Experimental Design

- Cannot properly design experiment without also thinking about the analysis
 - Giving design its proper due saves plenty of frustration with analysis later on
 - Not just sample size determination
- Too often designs based on published studies
 - Replicate what has been successful makes sense
 - But is design the most cost effective?
 - Can we do better?

Experimental Design

- Basic design principles do not change with number of outcomes (e.g., genes, proteins), choice of technology platform, or size of the data
 - There are additional platform decisions (i.e., read length, number of reads, sequencing depth)
- "Keep it simple stupid" (KISS) principle often plays even more of a role in these bioinformatics studies due to
 - Costs involved
 - Complexity/size of data obtained

Basic Design Principles

- Randomization
 - "balancing out" effects of lurking/hidden variables
- Replication
 - Improving precision
- Blocking
 - Control the effects of nuisance factors that otherwise increase the noise in an experiment
 - Discuss options with service that will generate data
 - Multiplexing or incomplete block for RNA-seq experiments?

Treatment Structure Strategies

- One-factor-at-a-time (OFAT)
 - Favored when data cheap and abundant
 - Often very inefficient
 - Cannot investigate interaction

Both can include blocking factors

- Factorial treatment structure
 - Hidden replication advantage
 - Can assess interaction

Data = Treatment structure factors + Design structure factors + error

Factorial Treatment Structure

Factor Levels	B1	B2
A1	xx	xx
A2	XX	

Factor Levels	B1	B2
A1	х	х
A2	х	х

n = 4

Effect of A = $\overline{A2B1} - \overline{A1B1}$ Var(Effect of A)= $\frac{2\sigma^2}{2} = \sigma^2$

n = 6 Assume variance is σ^2

Effect of A = $\overline{A2} - \overline{A1}$ Var(Effect of A)= $\frac{2\sigma^2}{2} = \sigma^2$

Nuisance Factors

- Imperative to consider all possible factors that could obscure or alter your results
- Often rely on sound judgement of center generating the bioinformatics data (i.e., temp, humidity)

– Block on day or technician?

• Controlling these factors allow results to be as generalizable as possible

- Sample split in half \rightarrow Trt1 to one half, Trt2 to other

• Randomization provides protection against the unknown....helps avoid possible biases

Replication

- Biological versus technical replicates
 - Technical replicate: Measuring same biological sample multiple times
 - Technical replicates assess non-biological variation
 - May be beneficial if this variation expected to be large
 - Biological replicates typically improve precision more and allow conclusions to be more <u>generalizable</u>
 - Biological estimates usually more expensive
- Number of replicates depends on numerous factors
 - Cost and availability of resources
 - Desired precision / power

Replication

- Pooling
 - Used when sample material scarce
 - Larger sample \rightarrow better precision of measurement
 - Danger in pooling
 - Measurement obtained from pooled sample can be different from the average of individual measurements
 - Better to avoid pooling if possible
 - More precision from multiple biological replicates

Calculating Power

 Numerous calculators available in software and online

- Be wary...you will always get numbers but whether they're meaningful depends on the quality of the inputted values
 - Trusting the quality of the inputs requires a basic understanding of the process

Why Power Analysis?

- Research is expensive...wouldn't want to conduct experiment with far...
 - too few experimental units (EUs)
 - Project won't find important differences that exist
 - Not worth the time and money
 - too many experimental units (EUs)
 - Project is unnecessarily too expensive
- Typical funding agency requirement

- Demonstrates thinking about plan and organization

A Simple Experiment

- Study the effect of cold on a fat gene in rat
- Use a Completely Randomized Design (CRD):
 - 6 rats are randomly assigned to one of two different environments
 - Trt 1: Normal environment (20°C)...*n*=3
 - Trt 2: Cold environment (5°C)...*n*=3
- Investigator expects lower expression of gene when under Trt 2
- Is *n*=3 per trt enough to detect this difference?

Statistical Analysis

• Two competing hypotheses:

$$\begin{split} H_0: \log_2(\mu_1/\mu_2) &= \log_2(\mu_1) - \log_2(\mu_2) = 0 \\ H_1: \log_2(\mu_1) - \log_2(\mu_2) > 0 \quad \text{i.e. one-tailed test (for now)} \end{split}$$

- Basis for choosing between the two hypotheses
 - *P*-value quantifies degree of evidence against H₀
 - Compare *P*-value to significance level α , commonly α =0.05
 - $P \le \alpha \rightarrow$ reject H_o and conclude mean larger in Trt 1
 - $P > \alpha \rightarrow$ fail to reject H_o, not enough evidence to conclude H₁
 - Report P-value and estimate / SE \rightarrow not just significance
 - Small *P*-value only means H₀ can be rejected

Type I and Type II errors

		What the data indicate:		
		Fail to reject H _o : (P>α)	Reject H _o : (P≤α)	
True state	H _o : is true	No error	Type I error (Prob is α)	
	H ₁ : is true	Type II error (Prob = β)	No error	

So is n = 3 rats large enough?

- **Rephrase:** Do we have enough statistical power?
- Need to "know" several things
 - How large is the <u>true mean difference</u> ($\delta = \log_2(\mu_1/\mu_2)$)?
 - 1) What do you anticipate?
 - 2) What would be scientifically/practically important?
 - Suppose researchers believe that $\delta = 1$ (fold change)
 - How much variability (σ) exists between rats within a grp?
 - Some prior information potentially available from previously published studies or small pilot study. Variability due to rat and method
 - May also have to guess
 - Suppose researchers believe that $\sigma = 0.7$
 - Effect size (δ/σ) often used when scale arbitrary
- Power analysis involves "<u>educated guessing</u>"

One way to elicit values for σ

• Use an empirical rule:

Consider range of responses to be equal to 4σ or 6σ

• <u>Question</u>: What would be the likely range (max-min) of log expression levels for rats within the same trt?

Suppose the answer was 2.8

• R = 2.8
$$\rightarrow \sigma$$
 = 0.7

Can often find similar published studies with estimates of σ. Always round up to be a little conservative.

Two competing hypotheses:

• Under $H_0 - \overline{y}_2 - \overline{y}_1 \sim N\left(0, \frac{2\sigma^2}{n}\right)_{\lceil}$

• Under $H_1 - \overline{y}_2 - \overline{y}_1 \sim N\left(\delta, \frac{2\sigma^2}{n}\right)$ expression levels. Different distributions is the mean.

Assuming y are the log_2 expression levels. Difference in distributions is the mean.

• Conduct one-tailed *t*-test for a certain α

Reject H_o: if
$$t_0 = \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{2s^2/n}} > t_{\alpha}$$

Need to study distribution of t₀ under H₀ and H₁

Power Calculators

- Calculators available in software such as Minitab, SAS, JMP, and R
 - Be wary of calculators (such as PWR in R) that asks just for an effect size
 - Effect size essentially a signal versus noise ratio
 - Noise may be more than just biological variation
- Many calculators also take into account issue of multiple comparisons

Multiple Comparisons

 Testing changes in expression for thousands of features across several treatments

M = # of independent tests

Multiple Comparisons

- Trade-off between control of false positive and false negative (power) rates
- Two common types of control on false positives
 - Familywise error rate : $P(at | east one) \le \alpha$

Bonferroni (compare P-value to α/M)

False discovery rate: Expected proportion of rejected hypotheses rejected incorrectly

False Discovery Rate

• Proposed by Benjamini and Hochberg (1995)

	Not Rejected	Rejected	Total
True Null	U	V	m ₀
False Null	Т	S	m-m ₀
	m-R	R	М

- FWER controls V
- FDR = E(V/R | R>0)Pr(R>0)

Microarray Myths and Truths

appeared: The Scientist, Vol. 16, No.17 (2002), p.22

• Myths:

- "That complex classification algorithms such as neural networks perform better than simpler methods for class prediction
- That <u>multiple testing issues can be ignored</u> without filling the literature with spurious results
- That prepackaged analysis tools are a good substitute for collaboration with statistical scientists in complex problems."

• Truths

- "The greatest challenge is organizing and training for a more multidisciplinary approach to systems biology. The greatest specific challenge is good practice in design and analysis of microarray-based experiments.
- Comparing expression in two RNA samples tells you only about those samples and may relate more to sample handling and assay artifacts than to biology. Robust knowledge requires <u>multiple samples that reflect biological</u> <u>variation</u>.
- Biologists need both good analysis tools and good statistical collaborators. Both are in short supply."

Summary

- Paying attention to design basics pays great dividends in both time and money
 - Issues do not go away with more complicated analyses or bigger data
- Seek expert help early

 Questions: <u>bacraig@purdue.edu</u> stat-help@stat.purdue.edu