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Outline

=" Radiomics uses statistical machine learning methods
to derive knowledge from medical images.

" The discovery space for radiomics-based markers has
grown impressively.

= However, substantial challenges arise in the
translational space.

= Focus on radiomics-based markers for clinical care
and clinical trials.

= Emphasis on markers based on Deep Learning
methods.
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The growth in biomarker research continues
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Articles with "deep learning" and
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Spectrum of radiomics methods
Deep learning

Feature space analysis

extraction and
regularization

Component Simple [ > Complex
Intensity Edges Gabor filters Texture descriptors A
Features
K-nearest neighbor (K-means)  Support vector machines (SVM) Random forest
Classifiers f
Active contour Statistical shape models ’
Shape ' g '

From : Chartrand et al, Radiographics 2017
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Architecture of multi-layer NNs

Common deep learning

network
From : Chartrand et al,

|
Inputs Hidden layers Outputs

Convolution NNs (CNN) used in analysis of imagine
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From : S. Morrison et al, TG
Purdue University work in progress, BROWN
School of Public Health
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Radiomics in high dimensional feature space

|. Image patients II. Identify ROI lll. Render in 3D IV. Extract Features IV. Data Integration

Data Mining

Model Building
; 1.07; = =

. e 0.81 / E

o Yy v 0.6]|
Whole tumor %%0; - }o. i
0.0
0.0 0204 06 0810
Habitats
Key aspects Gillies, Radiology 2016

* Segmentation
* Feature definition and extraction
* Semantic features (e.g. shape, vascularity, necrosis)
* Agnostic features (e.g. histogram of signal intensity, various
transforms)
* Classifier modeling
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Evaluating radiomic markers in the clinical

$

N
Accurate?  Accuracy In detection
« Accuracy Iin prediction )
Process of care: A
Affects » Dx thinking/decision making
Care? « Tx thinking/decision making ,
N

Patient outcomes:
* Quality of life, satisfaction, cost
« Mortality, morbidity

Affects
Outcome?
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Schematic of evolution and evaluation of markers

Present status for most
radiomics markers

Stage I: Discovery.

\

h -

Typically single
institution studies

L/
(Stage lll: Mature \/ |
Multi-institutional studies

Stage IV: Disseminated 3_\

Observational studies, registries

Stage Il : Introductory

\
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Some recent examples of deep learning studies
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Deep learning: A recent example

Liver Fibrosis: Deep Convolutional Neural Network for

Staging by Using Gadoxetic Acid—enhanced Hepatobiliary
Phase MR Images- Yasaka et al, Radiology, April 2018

a b Training set: 534 patients
Figure 1: Image data format process. (a) The images were magnified on a commercial viewer, referencing

the scale bar shown at the bottom of the window. (b) The captured images (594 x 644 pixels) were cropped . H

with a square crop box (white square) (350 < 350 pixels). The cropped images (350 X 350 pixels) were Te St SEt ‘ 100 pat I e nts

resized to 80 X 80 pixels before they were fed to the DCNN.

MRI: 1.5T and 3T
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Input image Convolutionall | l Max poolingl ‘ ‘ Convolutional2 ‘

40 pixels 40 pixels
BN — R B
° S > [y >
pixels pixels ™~ N
L 16 >0 256 X\/\_
16 %N\l images images
images
| Max pooling2 ! | Convolutional3 | | Max pooling3 ‘ B
20 pixels 20 pixels 1 pixel
> Iy oo S o
c S3S
256 %\> 102 4%\\; 1024
images images Images
| Parametrical data “:> -
BN = batch normalization
FC = fully connected
neurons
N = number of parametrical data (1024 + N)
neurons

Schematic of DCNN in Liver Fibrosis analysis, From Yasaka et al

MRI images in training session were augmented (90 augmented images per original)

* CNN included information on HBV and HCV status
e Supervised training
* Fibrosis score Fj, was derived.
[
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Diagnostic Performance of the F, score for staging liver fibrosis in
the Test Data Set. From Yasaka et al

Cirrhosis Advanced Fibrosis

(F4 vs F3-0) (F4-3 vs F2-0)

Substantial
Fibrosis

(F4-2 vs F1-0)

Full model
AUC
Threshold
Sensitivity
Specificity

June 2020

0.84 (0.81-0.85)  0.84 (0.83-0.86)

3.37 (3.31-3.52) 2.89 (2.79-3.03)
0.76 (0.72-0.79) 0.78 (0.75-0.85)
0.76 (0.74-0.77) 0.74 (0.70-0.77)

Purdue University

0.85 (0.82—0.86)
2.22 (2.11-2.49)
0.84 (0.83-0.86)
0.65 (0.60—0.68)
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DL for lung cancer screening

Cancer risk prediction
model

Prior

Prior Current

Current

Cancer
.- detection \
s : w

= Fullvolime Learned features
—— =il OOOOO0000CO000000000
- =~ model

Current

End-to-end lung cancer screening with
three-dimensional deep learning on low-dose

chest computed tomography
Ardila et al, Nature Medicine 2019

June 2020 Purdue University

e Malignancy probability
o | UMAS risk bucket
e Cancer localization

€x

DL analysis of images from
the National Lung Screening
Trial (NLST)

Subset of 6717 cases.
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Prediction of malignancy of model vs human interpreters

Comparison to individual readers 20 Comparison to individual readers
) s (R S e feeeee s [ [ e R

B"E‘ ______________________________________________
= |
2> AU T Ry - T T e T '
& Model: AUC 95.9
T (95% Cl:92.8-98.1) 204 ... Model: AUC926 | .
60 41 - - (95% CI: 86.5-97.3)

LUMAS buckets B
Individual readers Lung-RADS 3+ ;
Individual readers Lung-RADS 4A+

SO o O Individual readers Lung-RADS 4B/X 301 -f------- E— - O Individual readers Lung-RADS 4A+ | E ____
' ' ' Individual readers Lung-RADS 4B/X '

LUMAS buckets
O Individual readers Lung-BADS 3+

Lung-RADS 3+ applied retrospectively

3 : to NLST readers : Lung-RADS 3+ applied retrospectively
40 R SE— - R to NLST readers
0 10 20 30 40 50 _
1 anmanifiaihg (07 50 T T T T T i
. 0 5 10 15 20 25 30
Using current CT 1 — specificity (%)

Using current and prior CT

...This creates an opportunity to optimize the screening process via computer
assistance and automation. While the vast majority of patients remain
unscreened, we show the potential for deep learning models to increase the
accuracy, consistency and adoption of lung cancer screening worldwide
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Deep learning prediction of time-to-event response
.|

Samantha Morrison, Jon Steingrimmson, CG
. . Work in progress
" Brain cancer histology p;rasE po NOT QUOTE WITHOUT

from TCGA PERMISSION

" H&E stained whole slide Histology ROIs from two participants.
had ROIs identified by Survival times:
experts. 627 days and 1077 days.

= These regions of
interest were magnified
(20x) and used as inputs
to the modeling process
(1024 x 1024 pixels)

P. Mobadersany, et al. Predicting cancer Sufésmes
genomics using convolutional networks. PNASciences,
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Extracting features from images
.
= Analysis uses a pre-trained network

— ImageNetVGG16 (Oxford Visual Geometry Group)
= Input: 1024 x 1024 pixel images
= Qutput for each image: tensor 32 x 32 x 512
= Qutput tensors used as input in further analysis, e.g.
— Regularized Cox regression modeling
— Densely connected neural network

= Approach reduces time and computational burden

BROWN
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Extracting features from images
.|

= Analysis uses a pre-trained network
— ImageNetVGG16 (Oxford Visual Geometry Group)
= Input: 1024 x 1024 pixel images
= Qutput for each image: tensor 32 x 32 x 512
= Qutput tensors used as input in further analysis, e.g.
— Regularized Cox regression modeling
— Densely connected neural network

= Approach reduces time and computational burden

Work in progress. Please do not quote without permission
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VGG16 analysis — cont’d

|
= VGG16

— Improves classification accuracy by increasing depth of
neural network with small convolutional layers (3 x 3)

— Small convolutional layers decreases computation
burden and number of parameters

— VGG16 CNN was trained on variety of augmented
images.

= |n part of the analysis we removed the last 3 densely
connected layers, keeping only convolutional layers.

= Convolution layers include: 2D convolutions, Max Pooling,
and RelLU activation function

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. &=
CoRR, abs/1409.1556, 2014

BROWN
School of Public Health
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Work in progress. Please do not quote without permission
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VGG16 + FCN

Input: vgglo Densely
Pre-trained features .uen | CONnected
1024x1024 | vggle — (each 32 x features neural
pixel (convolutional 32 x 512) network
images layers)

Prediction of survival >914 days
Training Test

I E— s e L = - 1
1 1 1

_
1

06
|

g
=]
1 1 1 1
~ | i B 4 P .
[ [ I | [ [
cens(t) 0 cens(t) 0 1
JunVygork in progress. PIease ¢urdue nveqyote without permission -

School of Public Health




Weighted Brier Scores
e
Cox regression

Cox PH training set test set
weighed. brier on 0.163 0.192
predicted
rﬂiilih:::‘z ) 0.244 0.269
FCN
FCN training set test set
we‘i'::gi::;r o 0.112 0.201
m;?f]h:i:; E" 3 0.244 0.269
Work in progress. Please do not quote without permission SR
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Comparison of predictions
.

Overall Train Overall Test
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0.0

cox ph trainset pred cox ph testset pred

Work in progress. Please do not quote without permission
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Concordance index

Radiogenomics analysis
From Mobadersany et al, PNAS 2018

SCNN prediction accuracy
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Some recent examples of feature-based (high dimensional) analysis
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MR Imaging of Rectal Cancer: Radiomics Analysis to Assess
Treatment Response after Neoadjuvant Therapy

Horvat et al Radiology 2018

200
200

1150 s

100 100

June 2020

141 patients

21 had pCR, 93 had PR

T2-weighted MRI features radiomics

T2- and DW weighted qualitative assessment
34 features computed

Random Forest classifier

Purdue University




Radiomic features and their performance
.|

Feature

Energy

Kurtosis
Homogeneity
Gab45.contrast
Gab45.entropy
Gab90.contrast
Contrast
GabO0.entropy

June 2020

Gini Importance Median pCR Median pPR

0.99

0.95
0.82
0.78
0.69
0.66
0.61
0.58

84.5

3.7
71.6
63.6

104.8
70.9
18.8

105.5

68.1

4.9
50.2
95.7

128.3
93.9

9.9

130.1

P Value

0.005

0.04
0.005
0.003
0.006
0.006
0.001
0.006

Excerpt of table from: Horvat et al Radiology 2018

Purdue University
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Diagnostic and predictive performance of radiomic index for pCR

Sensitivity 100 (84, 100)
Specificity 91 (84, 96)
PPV 72 (53, 87)
NPV 100 (96, 100)
1.00
0.75
=
s
‘@ 0.50
o
)
0.25
0.00
0.00 0.25 0.50 0.75 1.00
1-Specificity

From: Horvat et al Radiology 2018
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Radiomic analysis for REDECT study

Ongoing project
Brown: Samantha Morrison, CG
Columbia: F. Ahmed, L. Liu, B. Zhao

Original trial conducted to assess the performance of lodine-124-
girentuximab PET/CT in the detection of clear cell carcinoma (ccRCC)
in patients with renal cancer. Divgi CG et al.,JCO 2013

C) lodine-124-girentuximab D) Contrast A) Contrast enhanced CT C) iodine-124-
PET/CT fused image enhanced CT (CECT) (CECT) girentuximab PET/CT
scan
Pathology: 1.0 cm right renal clear cell carcinoma Pathology: 1.8 cm right renal oncocytoma

June 2020 Purdue University BROWN
School of Public Health



Radiomic features extracted
RN

190 cases, 5287 features extracted from each case
Groups of features

= Size Related = GTDM (Gray Tone Difference
Matrix)

= @Gabor Energy
= Laws’ Energy
= Laplacian of Gaussian (LoG)

= First order statistics
= Shape

= Surface Shape

= Sigmoid Functions = Run Length features
» Wavelet Features (DWT, DWF) = Spatial Correlation
= Edge Frequency features = GLCM (Gray Level Co occurrence

. ) Matrix
= Fractal Dimension )

June 2020 Purdue University BROWN
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Correlation in features- examples

.
High correlation among features

P1_P2_DWT1_HLL Para_1
P2_.GLCM_Entropy.Para_42

P2_ GLCM_Sum_Average. Para_4
P1_P3_LoG_Z _MGI.Para_7
P1_P3_GLCM_Max_Prob.Para_4
P2_.GLCM_Cluster_Tendency.Para_30
P2_EdgeFreq_Coarseness Para_1
P4_P3_.GLCM_Sum_Variance Para_20
P3_P2_.GLCM_ASM.Para_24

P2_ LoG_X_Entropy.Para_4
P1_P2_.GLCM_Entropy.Para_5
P1_P3_.GLCM_Sum_Average.Para_3
P2_ GLCM_ContrastPara_38
P4_P3_GLCM_Sum_Variance. Para_24
P1_P3_GLCM_ASM.Para_3

P3_P2_ Spatial_Correlation.Para_37
P1_P3_ GLCM_Max_Prob.Para_7

P2_ Intensity_75percent Para_2
P1_P3_GLCM_IMCZ Para_38

P2_cLeu_iomPara_1e i

June 2020

Pearson
Correlation

1.0
0.5
0.0
-0.5

-1.0

P1_P2_GLCM_IDM.Para_g
P1_P2_GLCM_IDM.Para_7
P1_P2_GLCM_IDM.Para_&
P1_P2_GLCM_IDM.Para_5
P1_P2_GLCM_IDM.Para_4
P1_P2_GLCM_IDM.Para_3
P1_P2_GLCM_IDM.Para_2
P1_P2_GLCM_IDM.Para_1
P1_PZ_GLCM_Homogeneity. Para_45
P1_P2_GLCM_Homogeneity. Para_44
P1_P2_GLCM_Homogeneity. Para_43
P1_PZ_GLCM_Homogeneity. Para_42
P1_P2_.GLCM_Homogeneity.Para_41
P1_P2_GLCM_Homogeneity.Para_40
P1_P2_GLCM_Homogeneity.Para_39
P1_P2_.GLCM_Homogeneity.Para_38&
P1_PZ_GLCM_Homogeneity. Para_37
P1_P2_.GLCM_Homogeneity. Para_36
P1_P2_GLCM_Homogeneity. Para_35
P1_PZ_GLCM_Homogeneity. Para_34

Purdue University

BROWN
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Data reduction and model fitting

5287 features Unsupervised P1/P3 LoG Z Uniformity P3/P2 Spatial Correlation

| |

Features Pl/P3 LoGZ Unlformltv 37 P3/P2 Spat|a| Correlation 43

\ |

1311 features Variable Selection Logistic Regression Lasso, 10 fold CV
(via Lasso)

Selected Variables:
Eg. P3/P2 Intensity Mean 3 (varl), P1/P2 DWF D (var5), ....
, P2 DWF D (var 9)

3 features l

Final Model- Logistic : _
Regression logit(p) = Bo + Byvarl + Byvar5 + ...+ Bgvar9

June 2020 Purdue University BROWN
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Random Forests

190 Observations, 5287 features (same dataset as logistic model)

72 variables tried at each split; 500 trees
rf.redect

P2>LoG Z Uniformit>Para 8 0.540
P2>LoG Z Uniformity>Para 16 0.488

P2 LoG Z Uniformit.Para_8
P2~ LoG_Z Uniformity.Para_16
P2~ LoG~Z UniformitPara_716
P2~ LoG—Z Uniformity Para_8
P2~ LoG_/Z Entrop.Para_16~
P2~ 1 oG/ Entrop.Para_8 o

0 24
P2~ GLCM “Sum_Entropy.Para_43 ©
P2~ Intensify _Kurfosis.Para_2 ©
P2~ oG _Z Entrop.Para_32 °
P1"P3 oG _Z MGIPara 25 ©
P2~ Intensity “Kartosis.Para_ 1
P2~ GLCM Sum_Entropy.Para_29
P2~ Intensify _Kurfosis.Para_3
P2~ GLCM Sum Entrongara_34
P2~ GLCM_MCCPara_33
P2~ GLCM—Sum EntropyABara_g 1

oo

[eRele]

S
_Sum_Entropy.Para”8
—Sum”_Entropy.Para_32

Sum”_Entropy.Para_27

Sum_Entropy.Para_4
Entropy.Para_44
P2 GITCM Max_Prob.Para_11

P2~ GLCM”Max_Prob Para_34

oOoooooooOoo

\

o %)

AUC
Lasso Logistic : 0.77

RF: 0.8

| 1 | | T
0.0 0.1 0.2 03 0.4

MeanDecreaseGini

June 2020 Purdue University
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Feature space needs a lot of trimming
.|

Radiomics of CT Features May Be
Nonreproducible and Redundant: Influence

of CT Acquisition Parameters
Berenguer et al, Radiology 2018; 288:407—-415 ¢

Reproducibility of radiomics for deciphering tumor
henotype with imagzin

insheng Zhaol,Yongqgiang Tanl, Wei-Yann Ts Jing Qil, Chuanmiao Xiel, Lin Lul &
Lawrence H. Schwartz,

Our data suggest that radiomic features are reproducible over a wide range of imaging
settings. However, smooth and sharp reconstruction algorithms should not be used
interchangeably. These findings will raise awareness of the importance of properly setting
imaging acquisition parameters in radiomics/ radiogenomics research.

June 2020 Purdue University BROWN
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Marker evaluation revisited

= Discovery phase studies:

1. typically based on existing databases

2. assess diagnostic/predictive performance

3. seek to optimize performance

4. need to assess reproducibility of marker results
=  Central question:

Is the marker stable, reproducible, and promising
enough to move to clinical evaluation?

=  Current radiomics marker research is mainly in the
discovery stage.

S
-2
S

[ []
BROWN
School of Public Health
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Machine learning in apps
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Smartphone apps for melanoma detection
.|

e Large number of
apps available.

Example

* Technically Snap a picture of your skin
sophisticated concern
algorithms (e.g. using
fractals) for pattern HIPAA Compiian
recognition are @ rescarc Backed
implemented. ) 15000+ casesanswored

e Store and transmit Stringat82459
images.

« Can compare images ‘ | Pwe——
taken longitudinally °'"“‘“ |

June 2020 Purdue University BROWN
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Deep learning potential

.
Dermatologist-level classification of skin cancer
with deep neural networks Esteva et al, Nature 2017

Comparison of accuracies in

retrospective reader study
Melanoma: 130 images

The CNN achieves performance on par
with all tested experts across both
tasks, demonstrating an artificial
intelligence capable of classifying skin
cancer with a level of competence
comparable to dermatologists.
Outfitted with deep neural networks,
mobile devices can potentially extend
the reach of dermatologists outside of
the clinic. It is projected that 6.3 billion
smartphone subscriptions will exist by

Specificity

== Algorithm: AUC = 0.94
® Dermatologists (22)

the year 2021 (ref. 13) and can ¢ Average dermatologist
therefore potentially provide low-cost 0 5 —
universal access to vital diagnostic Sensitivity

care.

June 2020 Purdue University BROWN
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Smartphone-Based
Applications for Skin Dermatol Clin 35 (2017) 551-557

Monitoring and Melanoma . : :
Detection http://dx.doi.org/10.1016/j.det.2017.06.014

Elizabeth Chao, MD, PhD?, Chelsea K. Meenan, BsP,
Laura K. Ferris, MD, PhD**

* Despite the abundance of apps ..., few have been
evaluated for clinical efficacy and none has been
sufficiently accurate and reliable using established
research methodologies.

* ... currently no established quality standards or regulatory
oversight of mobile medical apps to ensure patient safety
and minimize harm.

* e important ethical concerns regarding patient
confidentiality, informed consent, transparency of data
ownership, and data privacy protection.

* Further studies are needed to assess the safety and
efficacy ....

June 2020 Purdue University




Regulating machine learning in devices

June 2020 Purdue University



FDA approved deep learning software

Approved indications for Oncology suite (Jan 2018)

Arterys Oncology DL is a medical diagnostic application for viewing, manipulation, 3D-
visualization and comparison of medical images from multiple imaging modalities
and/or multiple time-points. The application supports anatomical datasets, such as CT
or MR. The images can be viewed in a number of output formats including MIP and
volume rendering.

Arterys Oncology DL is designed to support the oncological workflow by helping the user
confirm the absence or presence of lesions, including evaluation, quantification, follow-
up and documentation of any such lesions.

Note: The clinician retains the ultimate responsibility for making

the pertinent diagnosis based on their standard practices and visual
comparison of the separate unregistered images. Arterys Oncology DL is a

complement to these standard procedures

June 2020 Purdue University




FDA approves VizAl clinical decision support

From the FDA press release:

The Viz.Al Contact application is
intended to be used by
neurovascular specialists, such as
vascular neurologists, neuro-
interventional specialists or other
professionals with similar
training. The application is limited
to analysis of imaging data and
should not be used as a
replacement of a full patient
evaluation or solely relied upon to
make or confirm a diagnosis £

June 2020 Purdue University BROWN
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FDA approves ldx_DR for dx of diabetic retinopathy

Autonomous Al algorithm based on biomarkers

Biomarker Detection (mostly CNN)

. Hemorrhages
. Microaneurysry

\

Quality

| Assessment Diseasa
hysiciegieally piausioie Al Assessment
Abramoff et al, IQVS 2007 S ek
Abramoff et al, Nat Dig Med 2018 Anatomy Clinical Decision

Localization

From FDA press release:
IDx-DR is the first device authorized for marketing that provides a

screening decision without the need for a clinician to also
interpret the image or results, which makes it usable by health
care providers who may not normally be involved in eye care. _

June 2020 Purdue University BROWN
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DL and Radiomics regulated as CAD

= Parsimonious solution, for now.
= Increasing reliance on CAD likely.
= Reliability and safety of need to be assessed,
= Especially of DL:
— Face validity of results?
— Long term properties of algorithms?

— Under what conditions is performance
guaranteed to meet minimum standards?

June 2020 Purdue University BROWN
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Commentary
.

An avalanche of markers: Many potential markers.
How to prioritize for clinical studies?

Software/modalities evolves rapidly: Moving
target: When should evaluation take place?

Variability: by machine, patient cohort
Reproducibility: needs to be established
Appropriate training, calibration

Performance is not guaranteed. Safety and
performance monitoring

Face validity of results lacking.

June 2020 Purdue University BROWN
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Collaborators
RN

Samantha Morrison, AM

Jon Steingrimsson, PhD
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Thank you!
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