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Outline

A Radiomicsuses statisticamachine learningnethods
to derive knowledgefrom medical images.

A Thediscovery spacefor radiomicsbased markers has
grown impressively.

A However,substantial challenges arise in the
translational space.

A Focus on radiomicbasedmarkersfor clinical care
and clinicaltrials.

A Emphasis on markers based @eep Learning
methods.
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The growth in biomarker research continues
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Articles with "deep learning" and

Articles with "radiomics' in "diagnosis" or "imaging" in
title/abstract title/absrract
800 800
600 600
400 400
200 200
O O 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

2010 2012 2014 2016 2018 2020

June 2020 Purdue University




Spectrum ofradiomicsmethods

Deep learning

Featurespace analysis
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Architecture of multHlayer NNs

Common deep learning

network
From : Chartranckt al,
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Radiomican high dimensional feature space

|. Image patients II. Identify ROI lll. Render in 3D IV. Extract Features IV. Data Integration
Data Mining

Model Building
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Key aspects Gillies Radiology 2016

A Segmentation
A Feature definition and extraction
A Semantic features (e.g. shape, vascularity, necrosis)
A Agnostic features (e.g. histogram of signal intensity, various
transforms)
A Classifier modeling
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Evaluating radiomic markers in the clinical

$

Accurate?

Affects
Care?

Affects
Qutcome?
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A Accuracy in detection
AAccuracy in prediction

N
Process of care:
ADx thinking/decision making
ATx thinking/decision making ,
N

Patient outcomes:
A Quality of life, satisfaction, cost
A Mortality, morbidity
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Schematic of evolution and evaluation of markers

Present status for mos
radiomicsmarkers

Stage 1 Discovery.
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Some recent examples of deep learning studies
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Deep learning: A recent example

Liver Fibrosis: Deep Convolutional Neural Network for

Staging by Using Gadoxetic Acidi enhanced Hepatobiliary
Phase MR Images- Yasaka et al, Radiology, April 2018

a b Tralning set: 534 patient:
Figure 1: Image data format process. (a) The images were magnified on a commercial viewer, referencing .

the scale bar shown at the bottom of the window. (b) The captured images (594 x 644 pixels) were cropped .

with a square crop box (white square) (350 < 350 pixels). The cropped images (350 X 350 pixels) were Te St Set ' 100 p atl e ntS

resized to 80 X 80 pixels before they were fed to the DCNN. M R I . 1 5T an d 3T
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Schematic of DCNN in Liver Fibrosis analysis, From Yasaka et al

A MRI images in training session were augmented (90 augmented images per orig
A CNN included information on HBV and HCV status

A Supervised training

A Fibrosis score £ was derived.
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Diagnostic Performance of thejFscore for staging liver fibrosis in
the Test DateSet. FromYasakeet al

Cirrhosis Advanced Fibrosis

(F4 vs F31 0) (F41 3 vs F2i 0)

Substantial
Fibrosis

(F4i 2 vs F1i 0)

Full model
AUC
Threshold
Sensitivity
Specificity
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0.84 (0.81i0.85)  0.84 (0.83i 0.86)

3.37 (3.31i 3.52) 2.89 (2.79i 3.03)
0.76 (0.72i 0.79) 0.78 (0.75i 0.85)
0.76 (0.74i 0.77) 0.74 (0.707 0.77)
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0.85 (0.82i 0.86)
2.22 (2.11i 2.49)
0.84 (0.83i 0.86)
0.65 (0.60i 0.68)




DL for lung cancer screening

e Malignancy probability
e L UMAS risk bucket

: .- Cancer risk prediction ° st
Prior Current e modZI _: Cancer localization
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DL analysis of images from
the National Lung Screening
Trial (NLST)

Endto-end lung cancer screening with
three-dimensional deep learning on lowlose

chest computedomography

Ardilaet al, Nature Medicine 2019
Subset of 6717 cases.
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Prediction of malignancy of model vs human interpreters

o Comparison to individual readers 20 Comparison to individual readers
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Lung-RADS 3+ applied retrospectively
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Using current and prior CT

eThi s cr eoppoawmityacoptimize the screening process via computer
assistance and automation. While the vast majority of patients remain
unscreened, we show the potential for deep learning models to increase the
accuracy, consistency and adoption of lung cancer screening worldwide
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Deep learning prediction of timéo-event response

—————————————————————
Samantha Morrison, Jon Steingrimmson, CG

) _ _ Work Iin progress

A Brain cancer histologyb| EASE DO NQUOTE WITHOUT

~ from TCGA PERMISSION

A H&E stained whole slide  jstology ROIs from two participants.

had ROlIs identified by Survival times:
experts. 627days andl077days.

A These regions of
Interest were magnified
(20x) and used as inputs
to the modeling process
(1024 x 1024 pixels)

P.Mobadersany et al. Predicting cancer outcomes from histology and
genomics using convolutional network®NAScience2018.
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