A detailed walk through a CAS authentication

4/7/2011

(and how to get your mits on the authenticated user)

« Welcome!
e First of all, what is CAS?

Web single sign on

Uses “federated” authentication, where all authentication is done by the
CAS server, instead of individual application servers

The implementation is an open source protocol, open source Java
server, and several open source clients

Purdue runs a CAS server, configured to authenticate with Purdue
Career Account (https://www.purdue.edu/apps/account/cas)

As of 4/5/2011, 349 application servers are authorized to check CAS
tickets

More can be found at:
- http://www.jasig.org/cas
- https://www.purdue.edu/apps/account/docs/CAS/CAS _information.jsp

Purdue University Identity and Access Management 1

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

 There are three machines in this game

e a) Browser

* b) Application server

Configured with a CAS client to require authentication for certain
urls

e) CAS server (http://www.jasig.org/cas)

4/7/2011

Serves CAS login web page and authenticates users

Issues TGT cookie (ticket granting ticket) so user does not have to
login every redirect to CAS server

Redirects back to application server with ticket=ST-xxx service ticket
in url for CAS client to check

Validates CAS service tickets for application servers

Purdue University Identity and Access Management 2

A detailed walk through a CAS authentication,

(and how to get your mits on the authenticated user)

Browser sampleapp
1) initial request
- 2) redirect to CAS login page with service=url_back _to _sampleapp_page T
CAS server
3) request CAS login page / \
4) html for CAS login page T
-) gin pag
5) POST login and password 9)ticket validation response -
< 6) set CASTGC cookie and T - 8) validate ST-xxx service ticket
redirect to sampleapp with ticket=ST-xxx
7) back to initial request, with ticket=ST-xxx (the service ticket)
- 10) sampleapp responds with application page
- G R
4/7/2011 Purdue University Identity and Access Management

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

e Step 1 — Initial request

e ‘“sampleapp” application server is configured with a CAS client to
require authentication for certain urls (in this example /test)

e User with browser accesses /test on sampleapp

« |If browser does not already have session on sampleapp,
sampleapp transfers control to the CAS client

« |f the CAS client does not see a ticket parameter in the request,
user is redirected back to the CAS login page with
service=url_to_return_to, in this example
http://localhost:8080/sampleapp/test

4/7/2011 Purdue University Identity and Access Management

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

» Step 2 —redirect to CAS login page

 User is redirected back to CAS server for authentication

« Application server (sampleapp) logs

2011-03-29 09:16:46,843 DEBUG
[org.jasig.cas.client.authentication.AuthenticationFilter] - <no ticket and no
assertion found>

2011-03-29 09:16:46,843 DEBUG
[org.jasig.cas.client.authentication.AuthenticationFilter] - <Constructed service
url: http://localhost:8080/sampleapp/test/>

2011-03-29 09:16:46,844 DEBUG
[org.jasig.cas.client.authentication.AuthenticationFilter] - <redirecting to
"https://www.purdue.edu/apps/account/cas-server-uber-webapp-3.4.6/login?service=
2F%2Flocalhost%3A8080%2Fsampleapp%2Ftest%2F">

application server access log:

0:0:0:0:0:0:0:1 - - [29/Mar/2011:09:16:46 -0400] "GET /sampleapp/test/ HTTP/1l.1"
B0 2=

4/7/2011 Purdue University Identity and Access Management 5

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

o Step 3 — browser requests CAS login page

 CAS server checks for its CASTGC cookie (ticket granting
ticket), if it's there, user is already authenticated via CAS, skip to
step 6 and redirect back to sampleapp with a service ticket

 If no CASTGC is present, serve browser the CAS login page
« CAS server access log:

0:0:0:0:0:0:0:1 - - [29/Mar/2011:09:16:47 -0400] "GET /cas-server-uber-webapp-
3.4.6/login?service=http%3A%2F%2Flocalhost%3A8080%2Fsampleapp%2Ftest%2F HTTP/1.1"
200 6935

4/7/2011 Purdue University Identity and Access Management

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

« Step 4 — CAS server sends login page to browser

« This is nice because application servers do not need to
- maintain their own login page
- maintain login/password credentials to do the actual authentication
- even see the password, it's between the browser and CAS server

4/7/2011 Purdue University Identity and Access Management 7

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

o Step 5 — browser POSTs login/password to CAS
server

 CAS server checks login and password, if authentication fails
serve another login page to browser

 Too many unsuccessful authentication attempts in a short period
of time will result in a “lockout”, where authentication will always
fail for a 15 minute lockout period

« CAS server access log:

0:0:0:0:0:0:0:1 - - [29/Mar/2011:09:16:52 -0400] "POST /cas-server-uber-webapp-
3.4.6/login?service=http%3A%2F%2Flocalhost%3A8080%2Fsampleapp%2Ftest%2F HTTP/1.1"
302 -

4/7/2011 Purdue University Identity and Access Management

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

» Step 6 — CAS server redirects back to application
server

e Aticket granting ticket TGT-xxx Is stored on the CAS server, and
set as a CASTGC cookie

« A service ticket is issued for the application
(http://localhost:8080/sampleapp/test/) and sent as a parameter
back to the application server

2011-03-29 09:16:52,208 DEBUG

[org.jasig.cas.web.support.CookieRetrievingCookieGenerator] - <Added cookie with
| name [CASTGC] and value [TGT-1-wKQjkOhweJE6MMTNCTwv6WoJMDBL61GISejnyCfigrMFCumYu-
|
| cas]>

2011-03-29 09:16:52,214 DEBUG [org.jasig.cas.ticket.registry.DefaultTicketRegistry]
- <Added ticket [ST-1-bdgbwHIReBonmaudvxJl-cas] to registry.>

2011-03-29 09:16:52,214 INFO [org.jasig.cas.CentralAuthenticationServiceImpl] -
<Granted service ticket [ST-1-bdgbwHIReBonmaudvxJl-cas] for service
[http://localhost:8080/sampleapp/test/] for user [Jjott]>

4/7/2011 Purdue University Identity and Access Management 9

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

o Step 7 — browser re-requests url from application
server, with a CAS service ticket

« Application server still has not yet established a session, so CAS
client takes control

« CAS client sees a ticket parameter in the url, that can be
checked with the CAS server

 CAS service ticket is only valid one time, and the CAS client
needs to use it within 90 seconds or it will expire

4/7/2011 Purdue University Identity and Access Management 10

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

» Step 8 — application server checks CAS service
ticket sent by browser in url

 CAS client preparing to check service ticket:
2011-03-29 09:16:52,231 DEBUG

[org.jasig.cas.client.validation.Cas20ProxyReceivingTicketValidationFilter] -
<Attempting to validate ticket: ST-1-bdgbwHIReBonmaudvxJl-cas>

2011-03-29 09:16:52,232 DEBUG
[org.jasig.cas.client.validation.Cas20ServiceTicketValidator] - <Constructing
validation url: https://www.purdue.edu/apps/account/cas-server-uber-webapp-
3.4.6/serviceValidate?ticket=ST-1-bdgbwHIReBonmaudvxJl-cas&service=http%3A%2F
$2Flocalhost%3A8080%2Fsampleapp%2Ftest%2F>

 CAS server access log:

127.0.0.1 - - [29/Mar/2011:09:16:52 -0400] "GET /cas-server-uber-webapp-
3.4.6/serviceValidate?ticket=ST-1-bdgbwHIReBonmaudvxJl-cas&service=http%3A%2F
22Flocalhost%3A8080%2Fsampleapp%2Ftest%2F HTTP/1.1" 200 281

4/7/2011 Purdue University Identity and Access Management 11

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

» Step 9 — CAS server responds to ticket check

 CAS server response (notice the NEW attributes!):

2011-03-29 09:16:52,327 DEBUG
[org.jasig.cas.client.validation.Cas20ServiceTicketValidator] - <Server response:
<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>
<cas:authenticationSuccess>
<cas:user>jott</cas:user>
<cas:attributes>
<cas:email>jott@purdue.edu</cas:email>
<cas:i2a2characteristics>0,3592,2000</cas:i2a2characteristics>
<cas:lastname>0tt</cas:lastname>
<cas:firstname>Jeffrey A</cas:firstname>
<cas:fullname>Jeffrey A Ott</cas:fullname>
<cas:puid>0012345678</cas:puid>
</cas:attributes>
</cas:authenticationSuccess>
</cas:serviceResponse>
5

« You can test this now yourself against the new CAS server version 3.4.6 (which
will become production in May 2011):

https://www.purdue.edu/apps/account/cas-server-uber-webapp-3.4.6/login
https://www.purdue.edu/apps/account/cas-server-uber-webapp-3.4.6/servicevalidate

4/7/2011 Purdue University Identity and Access Management 12

A detailed walk through a CAS authentication

4/7/2011

(and how to get your mits on the authenticated user)

« Step 10 — application server sends requested page

« Some CAS clients (including the Java CAS client) can be
configured to redirect the browser to the same url, but without
the ticket parameter

« Application server access log:

0:0:0:0:0:0:0:1 - - [29/Mar/2011:09:16:52 -0400] "GET /sampleapp/test/?ticket=ST-1-
bdgbwHIReBonmaudvxJl-cas HTTP/1.1" 302 -

0:0:0:0:0:0:0:1 - - [29/Mar/2011:09:16:52 -0400] "GET /sampleapp/test/ HTTP/1.1"
200 202

Purdue University Identity and Access Management 13

A detailed walk through a CAS authentication

4/7/2011

(and how to get your mits on the authenticated user)

« Java CAS client

https://wiki.jasig.org/display/CASC/CAS+Client+for+Java+3.1
Previous example used version 3.1.10

Looking at one CAS client will help understand how any of them
will need configured

Next two slides show the web.xml to configure the Java CAS
client for the previous example:

Purdue University Identity and Access Management 14

A detailed walk through a CAS authentication

e (and how to get your mits on the authenticated user)

<filter-name>CAS Authentication Filter</filter-name>
<filter-dlass>org.jasig.cas.client.authentication.AuthenticationFilter</filter-class>
<init-panam>
<payam-name>casServerLoginUrl</param-name>
<param-value>https://www.purdue.edu/apps/account/cas-server-uber-webapp-3.4.6/login</param-value>
</init-param>
<init-panam>
<param-name>serverName</param-name>
<payam-value>http://localhost:8080</param-value>
</init-param>
</filter>
<filter> |
<filter-name>CAS Validation Filter</filter-name>
<filter-dlass>org.jasig.cas.client.validation.Cas20ProxyReceivingTicketValidationFilter</filter-class>
<init-panam>
<payam-name>casServerUrlPrefix</param-name>
<pagam-value>https://www.purdue.edu/apps/account/cas-server-uber-webapp-3.4.6</param-value>
</init-pdaram>
<init-panam>
<param-name>serverName</param-name>
<pagam-value>http://localhost:8080</param-value>
</init-pdram>
<init-param>
<param-name>redirectAfterValidation</param-name>
<param-value>true</param-value>
</init-param>
<init-param>
<param-name>exceptionOnValidationFailure</param-name>
<param-value>false</param-value>
</init-param>

</£il&r2011 Purdue University Identity and Access Management 15

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

e Continued web.xml for Java CAS client
configuration:

<filter>
<filter-name>CAS HttpServletRequest Wrapper Filter</filter-name>
<filter-class>org.jasig.cas.client.util.HttpServletRequestWrapperFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>CAS Authentication Filter</filter-name>
<url-pattern>/test/*</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>CAS Validation Filter</filter-name>
<url-pattern>/test/*</url-pattern>

</filter-mapping>

<filter-mapping>
<filter-name>CAS HttpServletRequest Wrapper Filter</filter-name>
<url-pattern>/test/*</url-pattern>

</filter-mapping>

4/7/2011 Purdue University Identity and Access Management 16

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

 CAS is not just for web applications

 Browsers hold CAS state with a cookie (called CASTGC that
holds a CAS ticket granting ticket — TGT), but any client, such as
a mobile app, can obtain and store a TGT

« See https://wiki.jasig.org/display/CASUM/RESTful+API
 Example:

POST a username and password to https://CAS SERVER URL/vl/tickets
(with “Accept: text/plain” as a header)

And if the login/password check out, the server sends back

201 Created
Location: https://CAS SERVER URL/vl/tickets/{TGT id}

If authentication fails, the server returns back a 400 code

4/7/2011 Purdue University Identity and Access Management 17

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

 |nitiatives for later this year:

Ability to use Boilerkey for CAS authentication:

- If Boilerkey is used, CAS server will expose an extra attribute returned
by the ticket check that indicates that the authentication was a
Boilerkey authentication

https://www.purdue.edu/apps/account/IAMO/Purdue CareerAccount BoilerKey.Jjsp

« Separate mobile app CAS login page

« Application server administrators will be able to manage CAS ticket
check server lists via web page

e Check for more at:
- https://www.purdue.edu/apps/account/docs/CAS/CAS information.jsp

4/7/2011 Purdue University Identity and Access Management 18

A detailed walk through a CAS authentication

4/7/2011

(and how to get your mits on the authenticated user)

Thanks for your attention!
Questions?

Purdue Identity and Access Management can be
reached at accounts@purdue.edu

Please fill out an evaluation at
http://www.itap.purdue.edu/boilerweb/survey

Purdue University Identity and Access Management

19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

