
4/7/2011 Purdue University Identity and Access Management 1

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Welcome!

● First of all, what is CAS?
● Web single sign on

● Uses “federated” authentication, where all authentication is done by the 
CAS server, instead of individual application servers

● The implementation is an open source protocol, open source Java 
server, and several open source clients

● Purdue runs a CAS server, configured to authenticate with Purdue 
Career Account (https://www.purdue.edu/apps/account/cas)

● As of 4/5/2011, 349 application servers are authorized to check CAS 
tickets

● More can be found at:

– http://www.jasig.org/cas

– https://www.purdue.edu/apps/account/docs/CAS/CAS_information.jsp



4/7/2011 Purdue University Identity and Access Management 2

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● There are three machines in this game
● a) Browser

● b) Application server

– Configured with a CAS client to require authentication for certain 
urls

● c) CAS server (http://www.jasig.org/cas)

– Serves CAS login web page and authenticates users

– Issues TGT cookie (ticket granting ticket) so user does not have to 
login every redirect to CAS server

– Redirects back to application server with ticket=ST-xxx service ticket 
in url for CAS client to check

– Validates CAS service tickets for application servers



4/7/2011 Purdue University Identity and Access Management 3

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

Browser

CAS server

sampleapp
1) initial request

2) redirect to CAS login page with service=url_back_to_sampleapp_page

3) request CAS login page

4) html for CAS login page

5) POST login and password

6) set CASTGC cookie and
redirect to sampleapp with ticket=ST-xxx

7) back to initial request, with ticket=ST-xxx (the service ticket)

8) validate ST-xxx service ticket

9)ticket validation response

10) sampleapp responds with application page



4/7/2011 Purdue University Identity and Access Management 4

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Step 1 – initial request
● “sampleapp” application server is configured with a CAS client to 

require authentication for certain urls (in this example /test)

● User with browser accesses /test on sampleapp

● If browser does not already have session on sampleapp, 
sampleapp transfers control to the CAS client

● If the CAS client does not see a ticket parameter in the request, 
user is redirected back to the CAS login page with 
service=url_to_return_to, in this example 
http://localhost:8080/sampleapp/test



4/7/2011 Purdue University Identity and Access Management 5

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Step 2 – redirect to CAS login page
● User is redirected back to CAS server for authentication

● Application server (sampleapp) logs

2011­03­29 09:16:46,843 DEBUG 
[org.jasig.cas.client.authentication.AuthenticationFilter] ­ <no ticket and no 
assertion found>
2011­03­29 09:16:46,843 DEBUG 
[org.jasig.cas.client.authentication.AuthenticationFilter] ­ <Constructed service 
url: http://localhost:8080/sampleapp/test/>
2011­03­29 09:16:46,844 DEBUG 
[org.jasig.cas.client.authentication.AuthenticationFilter] ­ <redirecting to 
"https://www.purdue.edu/apps/account/cas­server­uber­webapp­3.4.6/login?service=
2F%2Flocalhost%3A8080%2Fsampleapp%2Ftest%2F">

application server access log:
0:0:0:0:0:0:0:1 ­ ­ [29/Mar/2011:09:16:46 ­0400] "GET /sampleapp/test/ HTTP/1.1" 
302 ­



4/7/2011 Purdue University Identity and Access Management 6

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Step 3 – browser requests CAS login page
● CAS server checks for its CASTGC cookie (ticket granting 

ticket), if it's there, user is already authenticated via CAS, skip to 
step 6 and redirect back to sampleapp with a service ticket

● If no CASTGC is present, serve browser the CAS login page

● CAS server access log:
0:0:0:0:0:0:0:1 ­ ­ [29/Mar/2011:09:16:47 ­0400] "GET /cas­server­uber­webapp­
3.4.6/login?service=http%3A%2F%2Flocalhost%3A8080%2Fsampleapp%2Ftest%2F HTTP/1.1" 
200 6935



4/7/2011 Purdue University Identity and Access Management 7

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Step 4 – CAS server sends login page to browser
● This is nice because application servers do not need to

– maintain their own login page

– maintain login/password credentials to do the actual authentication

– even see the password, it's between the browser and CAS server



4/7/2011 Purdue University Identity and Access Management 8

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Step 5 – browser POSTs login/password to CAS 
server
● CAS server checks login and password, if authentication fails 

serve another login page to browser

● Too many unsuccessful authentication attempts in a short period 
of time will result in a “lockout”, where authentication will always 
fail for a 15 minute lockout period

● CAS server access log:

0:0:0:0:0:0:0:1 ­ ­ [29/Mar/2011:09:16:52 ­0400] "POST /cas­server­uber­webapp­
3.4.6/login?service=http%3A%2F%2Flocalhost%3A8080%2Fsampleapp%2Ftest%2F HTTP/1.1" 
302 ­



4/7/2011 Purdue University Identity and Access Management 9

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Step 6 – CAS server redirects back to application 
server
● A ticket granting ticket TGT-xxx is stored on the CAS server, and 

set as a CASTGC cookie

● A service ticket is issued for the application 
(http://localhost:8080/sampleapp/test/) and sent as a parameter 
back to the application server

2011­03­29 09:16:52,208 DEBUG 
[org.jasig.cas.web.support.CookieRetrievingCookieGenerator] ­ <Added cookie with 
name [CASTGC] and value [TGT­1­wKQjkOhweJE6MMTNCqTwv6WojMDBL61GISejnyCfigrMFCumYu­
cas]>
2011­03­29 09:16:52,214 DEBUG [org.jasig.cas.ticket.registry.DefaultTicketRegistry] 
­ <Added ticket [ST­1­bdgbwHIReBonmaudvxJl­cas] to registry.>
2011­03­29 09:16:52,214 INFO [org.jasig.cas.CentralAuthenticationServiceImpl] ­ 
<Granted service ticket [ST­1­bdgbwHIReBonmaudvxJl­cas] for service 
[http://localhost:8080/sampleapp/test/] for user [jott]>



4/7/2011 Purdue University Identity and Access Management 10

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Step 7 – browser re-requests url from application 
server, with a CAS service ticket
● Application server still has not yet established a session, so CAS 

client takes control

● CAS client sees a ticket parameter in the url, that can be 
checked with the CAS server

● CAS service ticket is only valid one time, and the CAS client 
needs to use it within 90 seconds or it will expire



4/7/2011 Purdue University Identity and Access Management 11

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Step 8 – application server checks CAS service 
ticket sent by browser in url
● CAS client preparing to check service ticket:
2011­03­29 09:16:52,231 DEBUG 
[org.jasig.cas.client.validation.Cas20ProxyReceivingTicketValidationFilter] ­ 
<Attempting to validate ticket: ST­1­bdgbwHIReBonmaudvxJl­cas>
2011­03­29 09:16:52,232 DEBUG 
[org.jasig.cas.client.validation.Cas20ServiceTicketValidator] ­ <Constructing 
validation url: https://www.purdue.edu/apps/account/cas­server­uber­webapp­
3.4.6/serviceValidate?ticket=ST­1­bdgbwHIReBonmaudvxJl­cas&service=http%3A%2F
%2Flocalhost%3A8080%2Fsampleapp%2Ftest%2F>

● CAS server access log:
127.0.0.1 ­ ­ [29/Mar/2011:09:16:52 ­0400] "GET /cas­server­uber­webapp­
3.4.6/serviceValidate?ticket=ST­1­bdgbwHIReBonmaudvxJl­cas&service=http%3A%2F
%2Flocalhost%3A8080%2Fsampleapp%2Ftest%2F HTTP/1.1" 200 281



4/7/2011 Purdue University Identity and Access Management 12

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Step 9 – CAS server responds to ticket check
● CAS server response (notice the NEW attributes!):
2011­03­29 09:16:52,327 DEBUG 
[org.jasig.cas.client.validation.Cas20ServiceTicketValidator] ­ <Server response: 
<cas:serviceResponse xmlns:cas='http://www.yale.edu/tp/cas'>

<cas:authenticationSuccess>
<cas:user>jott</cas:user>
<cas:attributes>

<cas:email>jott@purdue.edu</cas:email>
<cas:i2a2characteristics>0,3592,2000</cas:i2a2characteristics>
<cas:lastname>Ott</cas:lastname>
<cas:firstname>Jeffrey A</cas:firstname>
<cas:fullname>Jeffrey A Ott</cas:fullname>
<cas:puid>0012345678</cas:puid>

</cas:attributes>
</cas:authenticationSuccess>

</cas:serviceResponse>
>

● You can test this now yourself against the new CAS server version 3.4.6 (which 
will become production in May 2011):

https://www.purdue.edu/apps/account/cas­server­uber­webapp­3.4.6/login
https://www.purdue.edu/apps/account/cas­server­uber­webapp­3.4.6/serviceValidate



4/7/2011 Purdue University Identity and Access Management 13

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Step 10 – application server sends requested page
● Some CAS clients (including the Java CAS client) can be 

configured to redirect the browser to the same url, but without 
the ticket parameter

● Application server access log:
0:0:0:0:0:0:0:1 ­ ­ [29/Mar/2011:09:16:52 ­0400] "GET /sampleapp/test/?ticket=ST­1­
bdgbwHIReBonmaudvxJl­cas HTTP/1.1" 302 ­
0:0:0:0:0:0:0:1 ­ ­ [29/Mar/2011:09:16:52 ­0400] "GET /sampleapp/test/ HTTP/1.1" 
200 202



4/7/2011 Purdue University Identity and Access Management 14

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Java CAS client
● https://wiki.jasig.org/display/CASC/CAS+Client+for+Java+3.1

● Previous example used version 3.1.10

● Looking at one CAS client will help understand how any of them 
will need configured

● Next two slides show the web.xml to configure the Java CAS 
client for the previous example:



4/7/2011 Purdue University Identity and Access Management 15

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)
<filter>

<filter­name>CAS Authentication Filter</filter­name>
<filter­class>org.jasig.cas.client.authentication.AuthenticationFilter</filter­class>
<init­param>

<param­name>casServerLoginUrl</param­name>
<param­value>https://www.purdue.edu/apps/account/cas­server­uber­webapp­3.4.6/login</param­value>

</init­param>
<init­param>

<param­name>serverName</param­name>
<param­value>http://localhost:8080</param­value>

</init­param>
</filter>
<filter>

<filter­name>CAS Validation Filter</filter­name>
<filter­class>org.jasig.cas.client.validation.Cas20ProxyReceivingTicketValidationFilter</filter­class>
<init­param>

<param­name>casServerUrlPrefix</param­name>
<param­value>https://www.purdue.edu/apps/account/cas­server­uber­webapp­3.4.6</param­value>

</init­param>
<init­param>

<param­name>serverName</param­name>
<param­value>http://localhost:8080</param­value>

</init­param>
<init­param>

<param­name>redirectAfterValidation</param­name>
<param­value>true</param­value>

</init­param>
<init­param>

<param­name>exceptionOnValidationFailure</param­name>
<param­value>false</param­value>

</init­param>
</filter>



4/7/2011 Purdue University Identity and Access Management 16

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Continued web.xml for Java CAS client 
configuration:

<filter>
<filter­name>CAS HttpServletRequest Wrapper Filter</filter­name>
<filter­class>org.jasig.cas.client.util.HttpServletRequestWrapperFilter</filter­class>

</filter>

<filter­mapping>
<filter­name>CAS Authentication Filter</filter­name>
<url­pattern>/test/*</url­pattern>

</filter­mapping>
<filter­mapping>

<filter­name>CAS Validation Filter</filter­name>
<url­pattern>/test/*</url­pattern>

</filter­mapping>
<filter­mapping>

<filter­name>CAS HttpServletRequest Wrapper Filter</filter­name>
<url­pattern>/test/*</url­pattern>

</filter­mapping>



4/7/2011 Purdue University Identity and Access Management 17

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● CAS is not just for web applications
● Browsers hold CAS state with a cookie (called CASTGC that 

holds a CAS ticket granting ticket – TGT), but any client, such as 
a mobile app, can obtain and store a TGT

● See https://wiki.jasig.org/display/CASUM/RESTful+API

● Example:
POST a username and password to https://CAS_SERVER_URL/v1/tickets
(with “Accept: text/plain” as a header)

And if the login/password check out, the server sends back

201 Created
Location: https://CAS_SERVER_URL/v1/tickets/{TGT id}

If authentication fails, the server returns back a 400 code



4/7/2011 Purdue University Identity and Access Management 18

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Initiatives for later this year:
● Ability to use Boilerkey for CAS authentication:

– If Boilerkey is used, CAS server will expose an extra attribute returned 
by the ticket check that indicates that the authentication was a 
Boilerkey authentication

● Separate mobile app CAS login page

● Application server administrators will be able to manage CAS ticket 
check server lists via web page

● Check for more at:

– https://www.purdue.edu/apps/account/docs/CAS/CAS_information.jsp

https://www.purdue.edu/apps/account/IAMO/Purdue_CareerAccount_BoilerKey.jsp



4/7/2011 Purdue University Identity and Access Management 19

A detailed walk through a CAS authentication

(and how to get your mits on the authenticated user)

● Thanks for your attention!

● Questions?

● Purdue Identity and Access Management can be 
reached at accounts@purdue.edu

● Please fill out an evaluation at 
http://www.itap.purdue.edu/boilerweb/survey


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

