Developing Custom Tools for Manure Management Planner

Author: Phil Hess

Revised: 2-Aug-2006
Copyright (2000-2006 Purdue Research Foundation.

www.agry.purdue.edu/software

1. Introduction

This document contains technical information for developers creating custom tools for Manure Management Planner (MMP) using Microsoft Office. You can also develop custom tools for MMP as a Windows dynamic-link library (DLL). For more information, refer to "Developing DLL-Based Custom Tools for MMP" (file DLLCustomTools.doc).
Note: Although MMP continues to support Office-based custom tools, you are encouraged to consider developing DLL-based custom tools in light of these limitations of Office-based tools:

· Require that users have a compatible version of Office installed on their computers.

· Won't run on "weak user" computers unless administrator has given them modify and write access to MMP's Custom folder when MMP is installed under the Program Files folder.

· Performance issues when Access-based tools are used with MMP's DocMaker.

· No cross-platform possibilities (Linux-based Web server, etc.) since Access is available only for Windows.

1.1 Example files

This document can be used in conjunction with the example tools in file CustomExamples.zip, as follows:

File Name
Description

Examples.mmt
Example custom tool definition file. When placed in MMP's Custom folder, it's loaded each time you open a plan (for example, sample plan IN-Pig2.mmp). It contains custom tool definitions for the following Access, Excel, Word and PowerPoint documents (which are also placed in MMP's Custom folder). These four "dummy" tools are accessible when you expand the "Proof-Of-Concept Example Tools" group of tools on the Tools dialog's Custom panel.

Example.mdb
Example Visual Basic for Applications (VBA) code that queries equipment data from the Access database that was exported when the tool was run. The resulting queried table is then copied to the Windows clipboard for pasting into a Word document.

Example.xls
Example VBA code that loads the table of manure application data from the Access database that was exported when the tool was run. The manure application data is then displayed on a sheet.

Example.doc
Example VBA code that just displays a brief message when Word is run.

Example.ppt
Example VBA code that starts a PowerPoint slide show containing the first slide of MMP's introduction.

1.2 Getting started

Most MMP tool developers prefer to develop custom tools in Access since it's a real database program and not just a program that can sort of "use" databases the way Excel and Word do.

If you develop with Access 2000, you can also run your tools with Access 2002 (XP) and 2003. If you develop with Access 2002 or 2003, you won't be able to run your tools with earlier versions of Access unless you use the Access 2000 .mdb file format and avoid using any features specific to Access 2002 or 2003.

The file formats for documents created with Word, Excel and PowerPoint are compatible across versions. However, there are a number of new language features in the Office 2002 and 2003 versions of VBA that are not supported in Office 2000's VBA, so be sure to test your tools with all versions of Office that you plan to support.

Help files for Office programming are located in the Microsoft Office\Office\1033 folder. You can open these files separately in Explorer or click the Programming Information topic at the bottom of each program's help Contents (Office 2000) or click the Visual Basic Reference topic at the bottom of each program's help Table of Contents (Office XP and 2003). The help file names are as follows:

ACMAINxx.CHM

XLMAINxx.CHM

VBAXLxx.CHM

WDMAINxx.CHM

VBAWRDxx.CHM

PPMAINxx.CHM

VBAPPTxx.CHM

Where xx is the Office version (2000 is 9, XP is 10, and 2003 is 11). Note that some of these files may not be installed by default.

Studying MMP's standard set of custom reports that were developed with Access is probably a good way to get started. There are a number of books at Barnes and Noble, etc. that supposedly teach you how to program in VBA, but studying examples is also a good way of learning. However, if you feel like you need some additional documentation over what is included in the Office help files, you might take a look at these books:

VB & VBA in a Nutshell: The Language by Paul Lomax, O'Reilly.

DAO Object Model: The Definitive Reference by Helen Feddema, O'Reilly.

1.3 Other sources of information

Please refer to the following files for additional examples and information. These files are either installed with MMP or are available from the Web site indicated above.

File Name
Description
MmpChart.mmt
Definition file for MMP's chart reports.

MmpChart.mdb
Database containing MMP's chart reports.

MmpTech.doc
Technical overview of MMP.

MmpLinks.doc
Overview of how to link to MMP via Automation.

ToolChecklist.doc
Checklist of items to keep in mind and check when developing custom tools.

2. Creating custom tools

2.1. Adding your own custom tools to MMP

1.
Create a text file and save it with an .mmt extension. For example, your custom tool file could be named MyCustomTools.mmt. You can use a text editor such as NotePad to create this file, although NotePad will add a .txt extension to the file when you first save it (you can rename the file in Windows Explorer to eliminate the .txt extension).

2.
Add a CustomTool section to the file for each of your custom tools. You can copy and paste the blank CustomTool section given below, then fill in the values for your tool as described in the definition section below.

Also, be sure to insert the ToolInfo section given below at the top of your file and fill in its values. The ToolInfo section's Name and Source values help identify your group of tools. The StateAbbr should be your state's two-letter abbreviation, or leave it blank if all states can use your tools.

3.
Start MMP and create or open a plan file for your state. MMP will alert you to any format errors in your custom tool file. Correct any errors and repeat this step until there are no errors.

4.
Try out your custom tools. They will be listed on the Tools dialog box's Custom panel.

[ToolInfo]

FileVers=1

Name=

Source=

StateAbbr=

[CustomTool=1]

Name=

SubGrpName=

Source=

Requires=

Server=

Open=

Run=

2.2. Format of a custom tool definition
Each custom tool definition consists of 7 lines in the form keyword=value, as described below. Any line that starts with a semicolon is considered a comment, so feel free to document your custom tool definitions.

Tip: For examples of working tool definitions, see file mmp-stnd.mmt, which defines MMP's standard set of Access-based custom tools.

1.
CustomTool. Assign each tool a unique number in the range 1-999. Note that this line must be in brackets.

2.
Name. Descriptive name of your tool. This name will be displayed in the tree view on the Tools dialog box's Custom panel.

3.
SubGrpName. Optional. Specify this to start a new indented subgroup of tools. All tools from this point on until the next SubGrpName setting will be in the new subgroup.

4.
Source. Description of the source or author of your tool. The source will be displayed on the Tools dialog box's Custom panel.

5.
Requires. Description of the software required by your tool. It's useful to include the required version of the software here too. The required software will be displayed on the Tools dialog box's Custom panel.

6.
Server. Name of software's automation server to use. MMP currently supports the automation servers installed with Microsoft Access, Excel, Word and PowerPoint.

7.
Open. Name of the file that's opened by automation server. Typically this is an .mdb, .xls, .doc or .ppt file that you create, which contains VBA code that runs a report you've designed. If the file name does not include a path, MMP looks in its Custom folder for this file.

8.
Run. Name of the VBA procedure in your file to run. You can also specify arguments to pass to your procedure. Separate arguments with commas. If an argument contains a comma, surround the entire argument with quote marks ("").

To indicate to MMP that it should export the plan file to an Access database (.mdb extension) and then pass the name of the exported Access file to your procedure, specify <ExportedDataMdb> as an argument. You can also pass other file and folder names. Here's the complete list of arguments:

Argument
Passes to procedure

<ExportedDataMdb>
Complete file name of plan's exported database, including file path.

<PlanMmp>
Complete file name of currently open plan file, including file path.

<PlanPath>
Plan file's path, without file name or extension.

<ProgramPath>
Path to MMP's folder.

<CustomPath>
Path to MMP's Custom folder.

<TempFile>
Path to uniquely named empty temporary file. Normally when this is specified the tool will be creating a report or other file with the temporary file name.
3. Making sense of MMP's exported databases

3.1. A brief guide to table names

When you export user-entered plan data (from .mmp file), initialization data (from .mmi file), and soil data (from .mms file) to an Access database file, MMP creates dozens of tables in the database. While each table's name suggests its contents, the sheer number of tables can be confusing. Here's a quick way of determining which tables are which.

· If a table's name ends in "Def", it contains initialization data (crop definitions, storage type definitions, etc.).

· If a table's name begins with "Init", it contains initialization data.

· These tables also contain initialization data: AEA, AppRegion, AppRegMo, CntyCode, NutAvail, Units.

· If a table's name begins with "Soil" or "Ssa", it contains soil data.

· All other tables contain user-entered plan data.

3.2. Creating a data dictionary

A data dictionary is a reference document that you can consult when you have questions about a database's structure and relationships or the names and specifications of its tables and fields. You can create a data dictionary for MMP's exported database using Access, as follows:

· Open a database with Access (for example, IN-Pig2.mdb exported by MMP from sample plan IN-Pig2.mmp).

· Choose Tools | Analyze | Documenter.

· In the Documenter dialog, on the Tables panel, click Select All to check all tables in the database.

· Click the Options button to bring up the Print Table Definition dialog:

· Under Include for Table, check Properties and Relationships, but leave Permissions unchecked.

· Under Include for Fields, select Names, Data Types, Sizes, and Properties.

· Under Include for Indexes, select Names and Fields.

· On the Current Database panel, check Relationships, but leave Properties unchecked.

· Click OK on the Documenter dialog to generate the data dictionary report. You can print this rather long report, or save it to a Snapshot file (.snp) or a Rich Text Format file (.rtf) by choosing File | Export.

Note: The Snapshot data dictionary report looks better than the RTF report, but you can open the RTF report and search it with Word.

4. Tips on designing Access reports

1.
It's a good practice to give the report's controls meaningful names. By default, Access names them using the type of control and a number. For example, if you add a Text Box control and a Label control to a new report, Access names the controls Text0 and Label1. You can rename the controls to indicate both the control's content and its type. For example, if these controls are used to display and label a manure application's rate, you might rename them to Rate_Text and Rate_Label. When you include the control's type in the control name (for example, Text, Label, Header, Footer, Subreport, Line, Page Break, etc.), it helps distinguish controls from table and query field names in expressions.

2.
You might want to use "Val" in the name of an invisible Text Box control that's used only to calculate an intermediate value. For example, you might want to use a control of this type to sum the control's calculated values (rather than the underlying field's values). With this type of control, set the Running Sum property to Over Group instead of using the Sum aggregate function in a Control Source or query expression.

3.
You may need to create a nested report, meaning a main report containing one or more subreports. A main report can reference controls in subreports. Subreports can also reference controls in the main report. Use the IsError function to detect whether the subreport appeared (had at least one record).

4.
The expression editor dialog is tricky. It badly needs a syntax checking button. Once you exit the dialog, you can't re-open it until the expression's syntax is okay, meaning you'll have to edit a possibly long expression (press Shift+F2 to edit the expression outside of the tiny one-line text box). Also, if the expression's syntax is not okay, Access sometimes reverts back to the previous expression when the report is run, losing all your typing.

5.
With a new report (even if based on an existing report), be sure to check page margins and column width, and set the report's Caption, Description, etc. Also, don't forget to set the file's Project Name (accessible from Tools | Properties in the VBA code editor).

6.
Since VBA doesn't include commonly-used functions such as Min or Max, you'll have to write these functions yourself if you need them.

7.
A report's Record Source can be either a table or, if data from multiple tables is required in the report, a SQL statement or query.

8.
Access doesn't print a subreport's page header/footer, only the main report's page header/footer. To repeat controls at the top of each page of a subreport (controls which would normally be placed in a page header), add a group header to the subreport and place the controls in the group header. Be sure to set the group header's Repeat Section property to Yes. Note that this works only if there's some way of grouping all desired records together – otherwise, Access repeats the group header for each group of records in the header's sort field. One way of tricking Access is to use a field that has the same value for all desired records (e.g., StartPlnYr) as the first sort field and add a group header to it.

9.
With a report designed to print in portrait orientation, a border around a control can go all the way to the page's right margin. In landscape orientation, however, Access appears to chop off the border's right side. To avoid this, size the rightmost control so there's one tic between it and the right margin.

10.
Use Tools | Database Utilities | Compact and Repair Database to reduce the size of a tool database prior to distribution. This is useful when distributing the database in a .zip file or as part of a compressed installation.

11.
By default, MMP displays user-entered data using the following format:

-
If a number has a decimal portion, displays it with any trailing decimal 0's trimmed. If a number has no decimal portion, MMP trims the decimal point too.

-
If a number is greater than 999, includes thousand separators.

-
If a number is less than 1, includes a leading 0.

-
If a number is 0, it's displayed as "0".

Access doesn't have a built-in "named" format equivalent to this. Instead, it has the following:

-
General Number – Like MMP's default in all respects except it doesn't include thousand separators. Access uses this if no Format is selected for a control.

-
Fixed – Access displays all values with the same number of decimal digits, even if there are trailing 0's. The number of decimal digits is determined by the Decimal Places property (or the Windows default if this property is not set).

-
Standard – Same as Fixed, but includes thousand separators.

MMP's default number format is useful with data like application rates, which may have a decimal place with solid manure (tons), but normally will be whole numbers with liquid manure (gallons). You can simulate MMP's default format in Access by entering something like the following for the control's Control Source property:

IIf([Rate]<100, Format([Rate], "0.0"), Format([Rate], "#,##0"))

With controls used to display a field that contains only integer data, just use "#,##0" with the Format function.

12.
Be careful referencing controls that use Format to return their value. The Format function returns a string, not a number. While Access generally allows you to mix numeric and string values in the same arithmetic expression, it has specific rules for comparing numbers with strings. If you want to do a numeric comparison of a number with a control's string value, use CLng or CDbl around the control reference to convert the string value to a number first.

13.
To sort a report into the order that the user expects (that is, in the order that the underlying table is displayed in MMP), sort by the table's PlanOrder column.

5. Access annoyances

1.
No way of searching a report or group of reports for all occurrences of strings, formats, fields or controls. Can't "grep" a report since not stored in text format.

2.
An Access report saved to Rich Text Format (File | Export) is not formatted correctly. When exporting, Access doesn't use a document footer for a report's page footer, instead outputting the page footer as a normal line in the document and setting its Spacing Before to "position" the line at the bottom of the page. However, Access doesn't calculate this spacing correctly, so the footer line appears at a different vertical position on each page. Also, a report saved to RTF loses any borders around its controls, making centered column headings look weird.

3.
An Access report saved to HTML (File | Export) is not formatted correctly. Since HTML viewers ignore blank lines and HTML has no way of setting line spacing, the HTML page's contents are all scrunched together vertically, so the page footer comes immediately after the last normal page line instead of at the bottom of the page. Also, since HTML doesn't support document page breaks (HTML viewers do the paginating), Access puts each report page in a separate HTML document. Furthermore, Access doesn't calculate horizontal spacing between controls correctly, meaning column headings and data aren't aligned.

6. Visual Basic annoyances

1.
No true object orientation. Only one class is allowed per .cls file and while these "classes" provide encapsulation and can be instantiated and have Create/Destroy-type routines, they lack inheritance and polymorphism.

2.
Underscore character is required to continue a line of code onto another line.

3.
Can't return function result by assigning it to predefined Result variable as in Pascal; have to assign result to function's name.

4.
Error trapping requires use of GO-TO's.

5.
Have to declare each variable's type separately in DIM statements. If you forget this and declare several variables, then the type, only the last variable in the list will be that type – the others will be Variant type.

6.
Visual Basic Editor displays keywords, comments, etc. using different colored text, but lacks the ability to print code using bold and italic in place of color.

Developing Custom Tools
Page 6
2-Aug-2006

