

Seeing the world through a visual language: Visual world paradigm in BSL

Robin L. Thompson, Neil Fox, David P. Vinson, Gabriella Vigliocco

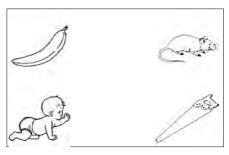
Deafness, Cognition and Language Research Centre Cognitive, Perceptual and Brain Sciences University College London

Lexical Access in spoken languages

- Listeners evaluate unfolding speech input against an activated set of lexical candidates which compete for recognition.
- As a spoken word unfolds:
 Words sharing the same initial sounds become
 partially active
 Semantically similar words become partially
 active
- For signed languages, very little is known about the time course of lexical processing

The time course of sign recognition

Previous gating studies:

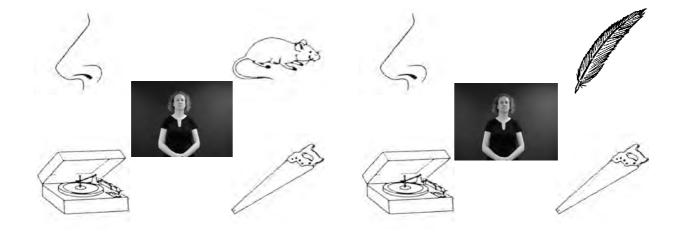

- Location and handshape are recognized first and together
- Movement is last and coincides with sign recognition
- Structural differences between signed and spoken languages may mean differences in recognition processes

Grosjean, 1981; Emmorey & Corina, 1990

Visual World

Visual World paradigm is used as a tool to track real time lexical access

(Tanenhaus, Spivey-Knowlton, Eberhard, Sedivy, 1995)



Where do sign perceivers look?

- In one-on-one interactions, sign perceivers look at the signer's face over 90% of the time (Emmorey, Thompson, Colvin, 2009)
- Also holds when sign perceivers watch a video of someone signing
 Participants fixated signer's face 61% - 99% across three video clips (Muir & Richardson, 2005)

Questions:

- Can a Visual World paradigm be used with signed languages?
- How do sign perceivers divide visual attention between language and contextual input?
- Are there any differences between Handshape and Location parameters for sign recognition?
- Are signs that share Handshape and Location parameters even stronger competitors?
- Are there any differences in sign recognition between deaf native signers and deaf signers who learn British Sign Language (BSL) later?

Method

Trials: (n= 107) Target picture present, or absent

Conditions (Shared Features):

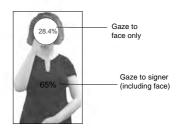
Semantic (ex: box, barrel)

Handshape + Movement (ex: saxophone, computer)
Location + Movement (ex: Africa, moon)
Handshape + Location (ex: mouse, nose)

Subjects:

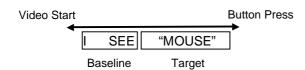
24 deaf BSL signers (13 women; mean age = 34)

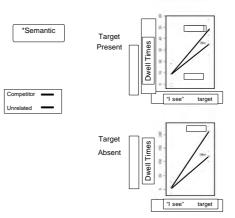
11 'Native signers,' BSL exposure from birth

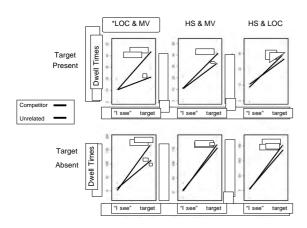

4 'Early signers,' signing before age 5

9 'Late signers,' signing after age 5

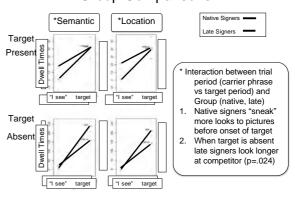
Task


Using a joystick, press a button to indicate whether the sign matches one of the pictures on the screen


Eye gaze to signer


35% of gaze fixations not toward signer during sign video

Time course of trial for analysis


Summary

- More looks to competitors that: share Location and Movement But not Handshape and Movement or Location and Handshape
- Features available at onset not the most compelling competitors – so what is?

Group Comparisons

nes

ness Cognition and Language Research Centre

Conclusions

- Visual world paradigm works with signed languages despite mandatory presence of visual linguistic stimulus
- Sign perceivers adjust gaze to take in contextual information
- Strongest competitor may not be from shared onset, but from most salient sign unit
- Time course and nature of phonological activation may be different for signed languages
- The nature of looking is different for native and nonnative signers

Thank you!

This work was supported by the Economic and Social Research Council of Great Britain (Grant RES-620-28-6001), Deafness, Cognition and Language Research Centre (DCAL)

