Cognitive and linguistic control in verbs of motion and location: Acquiring plurals \& arrangements
Hoffmeister, R., Fish, S., Kuntze, M., \& Caldwell-Harris, C.
Center for the Study of Communication \& the Deaf, Boston University

Introduction
There is a great deal of research on ASL classifiers and verbs of motion (VoM) but very
little work done on verbs of location (VoL) Arrangement in space and the acoompanying motion to depict a VoL involves constructions that delineate movement of the verb as (plurality) in a locative frame. There is little work on what Deaf children know about making metalinguistic choices on how to establish classifiers within different
arrangements in space to convey either a VM or a VoL.
Depicting more than one object in phrases
and sentences involves using plural forms in and sentences involves using purar forms tend to be nested inside
ASt classifier frames and predicates, especially VOL (Brendel, Hoffmeister, \&Fish, 2005). Since ASL uses both handsto depict objects, the use of both hands may also indicate plural notions
The concept of two cars which are located ina specific arrangement in space requires an ASL form that uses both hands simultaneously placed in different locations. Figure 1illustrates the concept of TWO-CARS IN-STAGGERD-4 PLACE-ARRANGEMENT.
In figure 2, the frame presents multiple cans mith 3 upright cans and 1 on its side. There is
no movement depicted. To represent multiple cans the seoondary hand must be held in place while the primary hand in a CCL handshape stamps out two locations to the right of the held hand and turns the moving hand from its palm
facingleft to palm facing down. This depicts a facing left to palm facing down. This depictsa
VoL. Should the primary hand turn the moving hand from palm facing left to palm facing up, this would indicate V VM. Talmy refers to these as verb derived nominals (Talmy, 1985, p .
$84 \cdot 2003$. 84; 2003).

Figure 1: Example of Verb of Location (VoL) stimulii 3CL + arrangement

Figure 2: Example of VoL stimuli

Purpose

Complex ASL plural processes are of interest to understand how Deaf children acquire or obtain
control over the interaction of handshape, control over the interaction of handshape, movement,
the arrangement of elements, and verb-types in the acquisition process. We will present information on the developmental pattern in the type of verb, spatial arrangement and the classifier that appear in o
Subjects
Table 1: Subjects

	Deaf Children Deaf Parents*	Deaf Children Hearing Parents
Number of participants	$\mathbf{1 3 2}$	$\mathbf{4 6 8}$
AVG Hearing Loss	$\mathbf{9 9 . 4}$	$\mathbf{9 9}$

- 600 Deaf children of deaf parents between 4 and 18 years of age: 132 DCDP (22%) 468 DCHP (78%)
The median chronological age (CA) was 12.0.

Procedures for Receptive Task
We administered the ASL plurals receptive task which is part of the American Sign Language Assessment Instrument (ASLAI),
(Hoffmeister, Greenwald, Bahan, \&Cole, 1989)

Receptive metalinguistic judgment task for ASL vocabulary
21 multiple-choice questions (4 items)
For each question, students saw the stimulus item on video, then a fade, followed by a
sequence of four response choices.
Subjects must choose the item that best
reflects the best response to the stimulus.
An example of a question from the response booklet (used by subjects 4 to 19 years old) is below:

C D

Table 2 shows the average score of DCDP \& CHP by age
Children of deaf parents had better performance, $\mathrm{X}=.63 \mathrm{DP}, \mathrm{X}=.55 \mathrm{HP}, \mathrm{p} \leq .00$ DCHP was correlated

- Same items are experienced as difficult by both DCDP and DCHP
- Neither group reached ceiling in any item.

Table 3: Rank Order Item difficulty: 1=easy, 21=hard

Rank Order	DescriptionBooks SHELF PAPER stack	Q*	DCDPC 0.91 0.89	Q* 2 4 4	DCHPC 0 0.87 0.86	
3	CARS-Paired alternately	7	0.86	7	0.85	CARS-Paired alternate
4	${ }_{\text {cosk }}^{\text {Book }}$	10	0.81	5	0.78	
5	random	14	0.79	10	0.75	Book
6	SCATTE	5	0.77	14	0.74	${ }_{\text {RAN }}$
7	CLOTHES	11	0.73	11	0.70	
8	cans	1	0.69	1	0.70	chaw
9	bananas	19	0.63	19	0.63	${ }_{\text {Ban }}^{\text {ON }}$
10	ONROD	12	0.62	3	0.58	${ }_{\text {Kling }}^{\text {Rens }}$
11	$\xrightarrow{\text { KEYS }}$	3	0.62	21	0.56	-
12	Pictur	${ }^{21}$	0.55	12	0.56	HaNGERS ON ROD
13	colns In					
	CANS					coins
14	Stac	9	0.50	8	0.4	
15	WIRE	16	0.50	13	0.49	
16		13	0.46	16	0.49	
17	Stacks	20	0.45	20	0.48	stack
18	Sow	18	0.24	18	0.22	SHOE
19	${ }_{\text {chat }}^{\text {chars }}$		0.23	15	0.22	
${ }_{21}^{20}$	ODin F	17	0.12	${ }_{17}$	${ }_{0} .14$	OODIN REF

Table 3 item difficulty shows:
Similarity of item difficulty across DCDP and DCHP - Hroups

- Handshape complexity is not the governing factor when both hands apears to be the most difficult to control classifier handshapes (CCL, VCL, 1CL),
ROW/PILE/ANMAL-IN-ROW
- Movement plus doubling up in location is more difficult than when movement is on a single plane or in a single
location, as in TWO-STACKS-of-TOWELS, TWO-ROWS

Conclusions

Complex ASL plural items (verb derived nominals) tend to be formed in complex predicates Verbs of Location) that require:
hands representing an object), and
2. A dual locative frame for independent hands, and
. Movement nested within one of the hands, or
3a. in the case of two locations, movement is
added to the whole plural frame (repeated), nesting a
plural within a plural. plural within a plural.
Nesting of handshape and complex movement equivalent to Talmy's (1985) verb derived nominals This nesting process in ASL also presents younger subjects with the possibiinty of imposing a VoM where a VoL is required, which was a common error for the younger ASL learners. This suggests that movement
is more difficult to accquire and obtain control over than handshape, even when the handshape refers to a group of objects (classifiers), and location.

Literature cited

Brendel, S., Hoffmeister, R., and Fish, S., (2005) Deaf children
acquiring ASL classifiers: Errors and Patern of Development in
a Signed Language. Xth Interational Congress For the Study
of Child Language, Berlin, Germany, July 28 .
of Child Language, Berlin, Germany, July 28 ,
Talmy, L., (1985.) Lexicalization patterns: semantic structure in
 and Syntac
New York
New York
Talmy, L. 20
Talmy, L. (2003) The representation of spatial structure in spoken
and signed language. In Emmorey, K . (ed) Perspectives Classifier Constructions in Signed Languages, Mahwah, NJ

Acknowledgments

We thank Fran Conlin and Alix Kraminitz for their willingness to assist us in this venture. Funding for this and Learning, Boston University and the IES National Center for Special Education Research Grant R324A100176 awarded to the Center for the Study of Communication and the Deaf, Boston University.

For further information

Please contact rhoff@bu.edu or mail to 62 Commonwealth Ave, Ctr for Study of Communication \& and the Deaf, Boston, MA 02215

