Basics of Router Administration

Presented by Brad DeVine
Senior Network Engineer
Introduction

- **Reason for Presentation**
 - Best Practices for Securing Network Devices
 - Important data is not stored on our network devices. But an intruder or attacker can shut down business by hijacking or interfering with them.
 - They can change access controls.
 - They can gain access to otherwise secured networks and resources.
 - Can Redirect/Mirror traffic to another location.

- **Outline of Topics**
 - The different types of network devices, and how they’re administered.
 - What bad things can happen when a network device is compromised?
 - What measures can an admin take to prevent problems?
Different Network Devices and How They’re Administered

- **Routers**
 - Separate and connect different IP subnets
 - Each subnet is a broadcast domain
 - Routers make their forwarding decisions based on the destination IP address
 - They build the forwarding tables by exchanging info with other routers or the administrator
Different Network Devices and How They’re Administered

- **Hubs**
 - Provide more network ports for users
 - Bandwidth is shared among all users, including the router
 - Have no intelligence - they don’t make forwarding decisions. Just read and repeat.
 - As a result, every host attached to the hub sees everyone else’s traffic. A hacker’s dream.
Switches (Bridges)

- Provide more ports like hubs. But each port has its own dedicated bandwidth.
- And each port only sees traffic destined for it.
- Broadcasts and unknown frames are the exception.
- If you want to Sniff a switch ports, it must be configured by an admin.
- They make their forwarding decisions based on destination mac-address.
- They build their forwarding tables by reading the source mac-addresses.
Firewalls

- Basically routers with much better traffic inspection capabilities.
- Can be layer 3, just like a router.
- Or they can be layer 2, where the inside and outside interfaces are on the same subnet.
- Can be stand alone appliances, a blade within another switch chassis, or software within another device.
Different Network Devices and How They’re Administered

- **Wireless Access Points**
 - Just a network switch, where one side is Ethernet, and the other is wireless.
 - Wireless routers also exist.
 - There are a host of wireless related vulnerabilities. I won’t be talking about them today, because that’s not my expertise.
 - But know that if an intruder gains access to an access point, it can be a jumping off point to other network devices.
Different Network Devices and How They’re Administered

- Evolution of Network Devices
 - A common setup was a router with a hub, or Coax thicknet cable attached.
 - Everyone on hub was on the same subnet.
 - Then came vlan aware switches. Hosts could choose which subnet/vlan to be a member of.
 - Now LAN routers don’t usually have physical ports. The gateway, or “dot 1” address is usually a virtual port within a blade in the chassis.
 - In fact, routing, fire walling, VPN, and wireless services are often contained as software functions within a large switch chassis.
How Network Devices are Administered

- The administration is usually common.
- On physical boxes, there’s a console port to attach a dumb terminal or terminal program.
- Blades in a chassis don’t have the physical port. But you can access them virtually from within the parent chassis.
- Once initially set up, you can TELNET/SSH/SNMP/HTTPS from across the network.
Physical Security
- Console port rarely has authentication on it.
- It must be behind a physical barrier.
- If a network device can’t be reached over the network, you must use the console to fix it.
- That creates a chicken before the egg scenario if authentication to a network server is set up.
- The solution is to use local usernames, or no password at all.
- It’s a risk. But if you have physical access to the console, you can get in to the device, no matter what.
Physical Security Cont.

- All ITaP switches are behind keyed or card swiped doors.
- But an intruder can still find a way in. So what do we do?
- The solution is to use different privilege levels on the devices.
- The console gives read-only access. And even that is limited.
- If you want to do some damage, you must have privileged level access. Only a select few engineers have it.
• AUX Ports
 • These are just like console ports, but pinned out for a modem to be attached.
 • Authentication is necessary, due to the risk of war dialing programs.
 • We don’t generally use the AUX port. We have other ways of doing this.

• Virtual Terminals
 • VTY’s let you telnet or SSH into a device and get a command shell.
 • Cisco devices provide 15 at a time by default. You don’t really want more than one person changing things at once though.
 • Can be secured via username/password, or PKI using Smart Cards.
 • The main security problem with them is that telnet is enabled by default. Telnet is not secure.
• Physical and Logical Separation of Network Devices
 • Some organizations have separate networks for sensitive data.
 • The components can be physically separate, like in the DOD.
 • Or they can be logically separate, like we use in the Data Centers.
 • The network devices set aside separate memory, CPU, etc. for the sensitive network. The normal network has no knowledge of the others.

• Specific Administration Attacks
 • “Write erase / reload” One of our worst nightmares. It would take an army of students to correct.
 • Setting up a SPAN, or Sniffer, port to redirect traffic to a rogue workstation.
 • Setting up RSPAN to a workstation across the network. This can also have a DOS effect by doubling the bandwidth across the links.
Denial of Service Attacks

- A simple one is to use up all the virtual terminals to prevent legit admins from getting in.
- But you don’t need to take over administration of a network device to cause problems.

Device Control Plane vs. User Plane

- User plane is set of resources on a device that normal user traffic goes across.
- Most of this traffic is not seen by the device CPU.
- In higher end switches, this is done in hardware.
- On lower end devices, separate memory, CPU, etc. is set aside.
Device Control Plane vs. User Plane (cont.)

- Control plane is set of resources used for traffic that must be seen by the device itself
- This includes:
 - Management Traffic
 - Broadcasts like ARP
 - Spanning-tree Frames
 - Packets with IP options set
 - Unknown destination traffic
- If attackers can saturate the control plane, the entire device can be rendered useless.
- Routing and Switching tables would become out of date and useless. And legit administrators couldn’t get in to fix it.
- The best way to prevent this is to use different subnets for user and management traffic.
Using Quality of Service to Mitigate DOS Attacks.
- QoS marks important traffic and gives it priority.
- What is “priority”? That’s up to the organization. But routing updates, management traffic, and the like are essential.
- QoS “priority” only kicks in when the network is saturated, like during a DOS attack.
- During that time, user traffic is selectively dropped in favor of the “important” traffic.
- This process is called Control Plane Policing.

QoS Scavenger Class
- Marks any traffic above, say 10% utilization, with lower priority.
- Has zero effect during normal operation.
- During times of trouble, the traffic above 10% is dropped.
- The theory is that most user ports never sustain above 5% utilization. That is, until they become infected.
- This would never be used on server ports.
The Spanning-Tree Protocol

- If a switch becomes so saturated, it stops processing spanning-tree, the entire network can come crashing down.
- In a network, redundancy is good.
 » Routers handle redundant links with ease.
 » Switches need extra help.
 » If you start adding extra links in between switches, frames can loop endlessly between them.
 » This is why chaining hubs / Linksys Routers together is bad. They don’t speak spanning-tree.
 » Spanning-tree negotiates between the switches to choose which links to use, and which to keep in standby.
• In a routed network, the layer 3 header has TTL field that keeps packets from looping around endlessly.
• The layer 2 frame has no such mechanism.
• It’s also possible for a host to claim to be the root of the spanning-tree. Then all traffic flows through them.
• There are commands to prevent all these things.
Other Common Attacks and Problems
- CAM Table Overflows
- VLAN Hopping
- ARP Spoofing
- VTP Death
- DHCP Starvation.
General Precautions

- General Device Hardening
 - Disable unnecessary UNIX Services.
 - Disable unneeded info towards the rest of the network like CDP/FDP info.
 - Disable unneeded IP Services on routers like proxy-arp and directed-broadcasts.
 - Use source-address validation to prevent IP spoofing.
 - Use access-lists on VTY’s and for SNMP. Read-only is a must.
 - Use a AAA server for authorizing command and recording accounting info.
 - Use MD5 hashed passwords to prevent shoulder surfing.
 - Use MD5 authentication between routers to prevent routing table corruption.
 - Disable unneeded ICMP messages that give attackers more info than they need to know.
Questions?