Research Foundation News

June 28, 2018

Superstrong Al alloys may change manufacturing processes for automobiles, aerospace devices

Zhang coatings In this photo, Qiang Li makes a deposition program on the operational computer, and Yifan Zhang loads samples into a sputtering chamber to prepare high-strength Al alloy coatings. Download image

WEST LAFAYETTE, Ind. – Purdue University researchers have developed a superstrong material that may change some manufacturing processes for the aerospace and automobile industries.

The Purdue team, led by Xinghang Zhang, a professor in Purdue’s School of Materials Engineering, created high-strength aluminum alloy coatings. According to Zhang, there is an increasing demand for such materials because of their advantages for automakers and aerospace industries.

“We have created a very durable and lightweight aluminum alloy that is just as strong as, and possibly stronger than, stainless steel,” Zhang said. “Our aluminum alloy is lightweight and provides flexibility that stainless steel does not in many applications.”

Another member of the Purdue team, Yifan Zhang, a graduate student in materials engineering, said the aluminum alloy they created could be used for making wear- and corrosion-resistant automobile parts such as engines and coatings for optical lenses for specialized telescopes in the aerospace industry.

Purdue researchers create the super-strong aluminum alloy by introducing “stacking faults,” or distortions in the crystal structure of aluminum. Such distortions can lead to so-called nanotwins and complex stacking faults, such as 9R phase.

“The 9R type of stacking fault is usually rare in aluminum,” said Qiang Li, a doctoral student and member of the research team. “We introduce both twin boundaries and 9R phase within nanograins to the lightweight Al alloys that are both strong and highly deformable under stresses. Besides coating applications, we are also looking into scale-up potentials of bulk high-strength Al alloys.”

The team also created a way to develop the superstrong alloy coatings by introducing iron or Ti atoms into aluminum’s crystal structure. The resulting “nanotwinned” aluminum-iron alloy coatings proved to be one of the strongest aluminum alloys ever created, comparable to high-strength steels. The findings were published recently in Advanced Materials and Scripta Materialia.

The Purdue Office of Technology Commercialization helped secure a patent for the technology. It is available for licensing. 

About Purdue Office of Technology Commercialization

The Purdue Office of Technology Commercialization operates one of the most comprehensive technology transfer programs among leading research universities in the U.S. Services provided by this office support the economic development initiatives of Purdue University and benefit the university's academic activities. The office is managed by the Purdue Research Foundation, which received the 2016 Innovation and Economic Prosperity Universities Award for Innovation from the Association of Public and Land-grant Universities. For more information about funding and investment opportunities in startups based on a Purdue innovation, contact the Purdue Foundry at foundry@prf.org. For more information on licensing a Purdue innovation, contact the Office of Technology Commercialization at innovation@prf.org. The Purdue Research Foundation is a private, nonprofit foundation created to advance the mission of Purdue University.         


Purdue Research Foundation contact: Chris Adam, 765-588-3341, cladam@prf.org

Sources:
Xinghang Zhang, xzhang98@purdue.edu

D.H.R. Sarma, Office of Technology Commercialization, DHRSarma@prf.org


Research Foundation News

Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, (765) 494-4600

© 2015-22 Purdue University | An equal access/equal opportunity university | Copyright Complaints | Maintained by Office of Strategic Communications

Trouble with this page? Disability-related accessibility issue? Please contact News Service at purduenews@purdue.edu.