Vapor–Liquid Equilibria of the Water–Ethanol System at Low Alcohol Concentrations

Juan Hong,1 Michael R. Ladisch,1 and George T. Teo6
Purdue University, West Lafayette, Indiana 47907

Vapor–liquid equilibrium data for the ethanol–water system at 760 mmHg are collected by using a Gillespie-type still. Data in the range of ethanol concentration from 0.01 to 1.0 wt % are scarce, and yet they are much needed in the design of efficient ethanol recovery systems.

There has been strong interest in the use of renewable energy to reduce the consumption of petroleum fuel. An important consideration in biomass conversion concerns the energy consumption needed to produce alcohol compared to the energy content of the final alcohol product. Hence, there is a special interest in reducing energy consumption in the ethanol recovery step since it consumes a significant portion of the energy of the overall process. In low-energy distillation modeling, the bottom product stream is often assumed to contain no more than 0.02 wt % ethanol (1, 2). This constraint implies the requirement of efficient stripping. Otherwise, this alcohol loss becomes a significant cost factor when the feed concentration is low. In fact, low alcohol concentrations of 8–8 wt % ethanol are commonly encountered in the fermentation beer stream fed to a distillation system in the manufacture of fuel alcohol. How one can recover alcohol from a very dilute aqueous solution has thus become increasingly important as the interest in fuel alcohol further develops.

Approximately 80 reports have appeared in the literature since 1895 on the vapor–liquid equilibrium data of the ethanol–water system (3). However, these investigations have seldom been performed at concentrations lower than 1 wt % ethanol. Specifically, only the report by Dalager (4) contains data at concentrations between 0.01 and 0.1 wt % ethanol (four data points with concentrations between 0.038 and 0.053 wt % ethanol). In this paper, extensive vapor–liquid equilibrium data are reported for ethanol concentrations of 0.01–1.0 wt %.

Experimental Methods and Materials

Apparatus. An equilibrium still designed on the principle of the Gillespie still (5) was used. Figure 1 shows the apparatus, which was built mainly of Pyrex glass and consisted of a mixture reservoir, a still, a disengagement vessel, a condensate collector, and a control tube connecting the disengagement vessel to the still. The still is a concentric tube surrounded by heating tape. The boiling rate of the mixture in the outer shell of the tube was controlled by heat input through the heating tape. The control tube and the disengagement vessel were insulated from the surroundings by glass wool. The tip of the thermocouple in the disengagement vessel was located at the end of the control tube. To prevent condensation of the atmospheric moisture through the condenser, a Drierite container was attached to the condenser.

All experiments were run at atmospheric pressure (760 mmHg). The temperatures were measured with an alumel-chromel thermocouple and displayed on a digital thermometer (Omega Engineering, Inc., Stanford, CT 06907). The measurements were read to 0.2°C accuracy. The determinations of the ethanol concentrations were done by gas chromatography, refractive index, and a Karl Fischer-type water analyzer depending on the concentration range. The concentrations in the range of 0.01–2 wt % were measured by gas chromatography (Model 311, Carle Instruments, Inc., Anaheim, CA 92801) equipped with a flame ionization detector (FID) and a thermal conductivity detector (TCD). The concentrations in the range of 2–20 wt % were measured by a refractometer (Abbe 3L, Bausch & Lomb, Rochester, NY 14625). The concentrations above 20 wt % were determined by a Karl Fischer water analyzer (Aquafest-IV, Photovolt Corp., New York, NY 10010). The column (stainless, 87 cm long, 0.635 cm o.d., 0.319 cm i.d.) used for gas chromatography was packed with pure cellulose (Avicel PH-101, Lot 1645, FMC Corp., Marcus Hook, PA 19061) which is capable of the separation of ethanol and water (6). The column was thermostated at 150°C in an oven. Helium, hydrogen, and air were used as carrier gas, fuel,
Figure 3. K value vs. mole fraction of EOH: (Q) this work; (X) Dalgier (4). (—) averaged K value with data of this work (12,4).

to a temperature of ~5 °C less than the boiling point of the solution. Ca. 30 min was required for the liquid volumes within the condensate collector and disengagement vessel to reach steady state. The liquid volumes in each of these portions of the apparatus were ca. 10 and 30 mL, respectively. It was determined that a period of 2-3 h was required for true equilibrium to be attained. After this stand-up period, 1-mL samples were withdrawn from the disengagement vessel and the condensate collector and analyzed for ethanol and water concentrations.

Results and Discussion

To ensure that equilibrium was attained in our apparatus, we took eight equilibrium data points at different concentrations above 4 wt% ethanol and compared them with the previously reported data. As shown in Figure 2, our data agree satisfactorily with those in earlier reports. The entrainment of the liquid droplets in the vapor phase from the disengagement vessel was checked by introducing a nonvolatile component, glucose, to the reservoir and then checking for glucose in the condensate collector with a glucose analyzer (Beckman, No. 22634, Fullerton, Calif.). Glucose was not detected in the condensate.

Thiry equilibrium data points in the concentration range of 0.01~1.0 wt% were obtained. These are listed in Table I and shown in Figure 2. The temperature inside the disengagement vessel fluctuated in the range of 99.4 ± 0.4 °C. The calculated K values and the activity coefficients for ethanol (pure vapor pressure of 1655 mmHg at 4°C) and water (pure vapor pressure of 760 mmHg) are also listed in Table I. The calculated K values including 20 data points in the concentration range of 0.01~0.1 wt% are plotted in Figure 3. They compared well with Dalgier's results, K = 13.4 ± 0.5 (4). By assuming the K value to be a constant at all concentrations, we can calculate the average K value of the 20 experimental results taken at concentrations of 0.01~0.1 wt% to be 12.4 with a standard deviation of 1.5.

Literature Cited

(9) Roder, R. M.; Thompson, P. R. Ind. Eng. Chem. 1949, 41, 2925.

Received for review November 3, 1980. Revised Manuscript Received February 23, 1981. Accepted April 6, 1981. We acknowledge the financial support of the U.S. Department of Energy (DOE) through Contract No. 30-3054-1.
Figure 1. Schematic diagram of apparatus used in equilibrium study.

and oxidant, respectively. The outputs from the TCD and FID were monitored by a two-pen Model 7100 Hewlett-Packard strip chart recorder (Hewlett-Packard, San Diego, CA 92127). Deionized water and anhydrous ethanol (USP, U.S. Industrial Chemicals Co., New York, NY 10018) were used to make up the solutions used in the equilibrium studies. The accuracies of the concentration measurements by gas chromatography, refractometer, and Karl Fischer water analyzer were determined to be 0.0005, 0.05, and 0.05 wt % ethanol, respectively.

Procedure. Known concentrations of aqueous ethyl alcohol were charged to the reservoir and the still until the liquid level reached the top of the still. At this time, heating of the reservoir and the still was initiated. To minimize the time required for attaining equilibrium, an electric mantle was used to heat the reservoir

Figure 2. Vapor-liquid equilibrium for ethanol-water at 750 mm Hg. (0) this work; (X) Dagleger (4); (A) Alfahed et al. (7); (G) Cornwell and Montonen (8); (O) Reif and Thompson (9); (A) Ohkido and Williams (10). The bold line for the range of concentrations of 0.1-10 wt % represents smoothed data from previous reports (7-10) and this work. The straight line (-- --) for 0.01-0.1 wt % is drawn with averaged K value (12,4).