Liquid Hot Water Pretreatment of Corn Stover: Impact of BMR

Nathan S. Mosier
and
Wilfred Vermerris
Acknowledgements

- Dow AgroSciences for funding and providing stover and silage material
- Purdue Agriculture Research Programs
- Michael Ladisch
- Yulin Lu, Arun Athmanathan, Youngmi Kim, Harini Kadambi, Lauren Quig, Erin Rosswurm, Scott Stella, Linda Liu
Effect of Pretreatment of Corn Stover Representation of Physical Changes

Lignin

Cellulose

Amorphous Region

Crystalline Region

Hemicellulose

Mosier et al, 2004

Pretreatment
Goals:
Liquid Water Pretreatment

Determine conditions that:

1. **During** pretreatment
 1. Minimize hydrolysis to simple sugars
 2. Maximize disruption of lignin

2. **After** pretreatment
 1. Maximize hydrolysis to simple sugars
 2. Maximize fermentation of sugars to ethanol
Autohydrolysis during Pretreatment of Lignocellulose at 190°C

\[\begin{align*}
H & \xrightarrow{k_1} X_n \\
H^* & \xrightarrow{k_2} X_n \\
X_n & \xrightarrow{k_3} X \\
X & \xrightarrow{k_4} \text{Degradation Products}
\end{align*} \]

\[\begin{align*}
H & = \text{labile hemicellulose} \\
H^* & = \text{recalcitrant hemicellulose} \\
X_n & = \text{soluble xylans (oligosaccharides)} \\
X & = \text{xylose (monomer)}
\end{align*} \]
Liquid Hot Water Pretreatment at Lab Scale

Swagelok Fittings and Endcap

1" Stainless Steel Tubing

33.75 mL Working Volume

4 ½”
Maize *brown midrib* mutants: naturally occurring lignin mutants

› At least four different genetic loci:

 \[Bm1, Bm2, Bm3, Bm4 \]

› Maize and Sorghum BMR known

› BMR maize commercially available

› Mutants have

 – defective copies of the genes in biosynthesis of lignin monomers

 – brown vascular tissue

 – alterations in lignin chemical composition

› Maize BMR varieties were discovered between 1924 and 1947
Brown Midrib Maize

› Known to have higher digestibility in ruminants – grown commercially for silage to feed dairy cows

› Hypothesis:
 – Higher digestibility in ruminants may translate into higher enzymatic digestibility for biofuel production
Improved yield of fermentable sugars from *brown midrib* corn *stover* (no pretreatment)

![Graph showing glucose levels for different mutants in the same genetic background (A619).]

All mutants in the same genetic background (A619)
Enzymatic Hydrolysis of Corn Stover

- Faster hydrolysis
- Higher overall yield

\[\text{bm1-bm3} \]
\[\text{bm3} \]
\[\text{control} \]
Dry matter composition of wild type and BMR maize stover: Commercial Hybrids

<table>
<thead>
<tr>
<th>Composition (% dry mass)</th>
<th>Wild Type</th>
<th>BMR</th>
<th>CAFI Maize Stover*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucan</td>
<td>39%</td>
<td>41%</td>
<td>34%</td>
</tr>
<tr>
<td>Xylan + Galactan</td>
<td>25%</td>
<td>27%</td>
<td>24%</td>
</tr>
<tr>
<td>Arabinan</td>
<td>2.8%</td>
<td>3.1%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Acetyl</td>
<td>3.9%</td>
<td>3.5%</td>
<td>5.6%</td>
</tr>
<tr>
<td>Lignin</td>
<td>22%</td>
<td>20%</td>
<td>17%</td>
</tr>
<tr>
<td>Ash</td>
<td>4.1%</td>
<td>4.9%</td>
<td>6.1%</td>
</tr>
<tr>
<td>Total</td>
<td>96.8%</td>
<td>98.5%</td>
<td>90.9%</td>
</tr>
</tbody>
</table>

* Mosier et al., 2005a.
Enzymatic hydrolysis of maize stover (no pretreatment) with 15 FPU/g glucan cellulase supplemented with 40 IU β-g.
Pretreatment Method

- Liquid Hot Water Pretreatment
 - 15% Solid Loading (150 g/L)
 - 190 °C, varying times
 - 1 inch stainless steel tube
Mass Balance Around Pretreatment: Xylan

[Graph showing the mass balance of Xylan in Wild Type Stover and bmr Stover with varying pretreatment hold times at 190°C.]
Enzymatic Hydrolysis of Unwashed, Pretreated Maize Stover Slurry
15 FPU/g glucan

![Graph showing glucose yield vs. hydrolysis time for 'Wild Type' and 'bmr']
Summary of BMR Stover

› Optimum pretreatment conditions same for both types

› Lignin structure, but not amount, accounts for difference in enzymatic hydrolysis of untreated stover

› Differences observed after pretreatment
 – BMR stover digestibility 70%
 – Wild type digestibility 50%
 – BMR results in 40% improvement in sugar yield
Materials and Methods

Silage

- Whole maize plants from field plots were harvested, chopped, and ensiled in commercial silage bunkers.
- Ensiling is a fermentative preservation method: microbial activity produces organic acids that lower the pH and generate anaerobic conditions to preserve biomass for long term storage.
- Samples were taken after 6 months and stored at 4 C until processed.
Composition of Silage

<table>
<thead>
<tr>
<th></th>
<th>Glucan</th>
<th>Xylan</th>
<th>Arabinan</th>
<th>Lignin</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMR</td>
<td>48.7%</td>
<td>27.6%</td>
<td>2.9%</td>
<td>10.4%</td>
</tr>
<tr>
<td>Leafy</td>
<td>59.9%</td>
<td>21.0%</td>
<td>4.0%</td>
<td>11.0%</td>
</tr>
</tbody>
</table>
Methods

› Stainless Steel Reactors (35ml volume)
› Loading 20 w/w % (200 g/L)
› Sandbath heat up and temperature control
› Enzymatic Digestion
 - Whole slurry (undiluted)
 - pH adjustment to ~5
 - Spezyme CP and Novozyme 188 (15 FPU/g glucan and 40 CBU/g beta-glucosidase)
Optimization of Silage Pretreatment

Glucose Yield (24 hr)

- BMR
- Leafy

Pretreatment Condition:
- 10°C
- 160°C for 10', 20', 30', 5', 10', 15', 180°C
Pretreated BMR Silage
Pretreated Leafy Silage
Before hydrolysis

After hydrolysis
Saccharification of Pretreated Silage
15 FPU/g glucan Spezyme CP

Glucose Yield (% of theoretical)

Enzyme Hydrolysis Time
0 HR 3 HR 24 HR 48 HR 72 HR

BMR 5' 180°C
Leafy 10' 180°C
Fermentation Results

<table>
<thead>
<tr>
<th></th>
<th>Ethanol Titer (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMR 5’ 180C</td>
<td>27.4</td>
</tr>
<tr>
<td>Leafy 10’ 180C</td>
<td>21.0</td>
</tr>
</tbody>
</table>

24 hrs of hydrolysis at 50 C + 24 hrs of fermentation at 30 C
Summary

› Ensiling cellulosic biomass has potential as a way to preserve feedstock quality for biofuels production between harvest seasons.

› Liquid hot water pretreatment of maize silage requires less severity than dry maize stover (180C rather than 190C)

› *Brown Midrib* variety of maize silage result in higher yields of glucose than “leafy” variety of silage after pretreatment and enzyme hydrolysis

› Glucose released by enzymatic hydrolysis of pretreated silage is readily fermented to ethanol by *S. cerevisiae*
Thank you!