Bioprocess Modeling of Fouling Phenomena in Cross-flow Filtration of Viable Bacteria

Xuan Li, Seockmu Ku, Thomas Kreke, Kirk Foster, Jaycey Hardenstein, Xingya Liu, Eduardo Ximenes and Michael Ladisch

Laboratory of Renewable Resources Engineering
Department of Agricultural and Biological Engineering
Weldon School of Biomedical Engineering

BIOT 153: Computationally Enabled Biotechnology at Molecular, Cellular, and Process Scales
Chairs: R. Todd & A. Velayudhan

March 14, 2016
Acknowledgements

Material in this work supported by:
USDA Cooperative Agreement OSQR (935-42000-049-00D)
USDA Eastern Regional Research Center. Purdue University CFSE.
FDA Food Safety Challenge
Hatch Projects 10677 and 10646

Thank you to:
Jim Lindsay, George Paoli, USDA
Lisa Mauer http://www.cfse.purdue.edu/, Purdue University CFSE

Cooperators:
Bruce Applegate, Arun Bhunia, Joseph Irudayaraj (Purdue)
Rashid Bashir (U. Illinois);
Jeff Brewster, Andrew Gehring, George Paoli (USDA ERRC)

http://www.purdue.edu/lorre
Team Purdue

Not Shown:
Carla Carie
Winnie Chen
Oren Darling
Amanda Deering
Andrew Gehring
Jaycey Hardenstein
Tom Huang
Xuan Li
Jim Lindsey
Richard Linton
Lisa Mauer
Alysa Tungare
Hunter Vibbert
Microbiological Analytical Methods

Sample Preparation + Detection = SCREENING METHOD

Sample Preparation + Detection + Isolation Identification = CONFIRMATION METHOD

2 to 4 hours + 3 to 4 hours = 5 to 8 hours

24 to 48 hours + 2 to 4 hours + 24 to 48 hours = 2 to 4 days

FDA 101, May 13, 2015
Goal: Reduce time to detection from 24 hrs to 8 hours

Sample → USDA and FDA approved Molecular biology based method (PCR)

Days 0 → 24 hours

Non-selective Enrichment

Detection

Proposed protocol

Sample → Enzyme incubation *(Salmonella enrichment)* → Pre-filtration → Microfiltration and centrifugation → *Salmonella* detection (PCR)
Trying to Shift a Core Assumption

Shaker Flask

Petri Dish

Hollow Fiber Module

Single Hollow Fibers

200 μM

Feed Stream

Permeate
Schematic of Cross Flow HF Filtration

Concentrate Volume = Initial feed – Permeate – System (Dead) Volume

As fluid is recycled, volume decreases

Concentrate and recovered microorganisms must be viable
Hollow fiber membrane module

Ferrules

Tubing

Tee junctions

Tubing

Tubing

Tee junctions

Hollow fiber
(No. =12, Polysulfone, 0.2 micron)

Surface area to volume ratio (28 cm²/0.2 cm³)
Flux per unit volume of membrane module (51 mL/(mL·min))
Continuous operation minimizes manual handling
Microfiltration

Practiced for 70 years.

Fouling is a consistent challenge (short membrane life, long processing times, decreases in flux)

Many interacting mechanisms cause reduced product yield upon filtration or microfiltration.

Our work:

- addition of enzyme to reduce membrane fouling, achieve consistent fluxes and maximize membrane re-use.
- recovery of microorganisms in a viable state
- control of flow velocities on retentate and permeate sides of membrane modules to maximize fluxes
- processing of biological materials to disrupt biofilms and recover microbial cells
Controlling Flow Velocities to Maximize Flux

Traditional Crossflow Filtration

Our Crossflow System

Concepts packaged into C3D research prototypes fabricated in our laboratory
Start microfiltration of enzyme treated spinach extract
2 samples being run in parallel
Spinach Extract - 4 minutes later - approaching end of run
At 6 minutes sample collected in plastic tube
Sample tube removed from instrument
Decant into centrifuge tube
Centrifuge for 10 min
PCR result for initial cell concentration of 1 CFU/G spinach

Initial volume of 500 mL with 3 hr enrichment (lactose then RV) Automated microfiltration followed by centrifugation = 10^3 CFU/g in final volume of 1 mL for samples S1, S2, and S3.

PC = positive control. NC = negative control
Microfluidic Transport across Hollow Fiber Membrane
Model for Micro-filtration

Dynamic growth and compaction of deposit layer

\[
\int_0^t (2\pi (r_i - \delta) \partial z) (u - v_s) \phi_b \partial t = \pi (r_i^2 - (r_i - \delta)^2) \partial z \phi
\]

- \(u = \frac{r_i}{r_i - \delta} J \)
- \(v_s = \frac{0.05u_0 \bar{d}_p^2}{4(r_i - \delta)^2} \)
- Convective transport by permeation
- Shear induced back transport

Resistance of deposit layer

\(R_d = \alpha r_i \ln \frac{r_i}{r_i - \delta} \)

Compaction of deposit layer

\(\alpha = \alpha_0 \left(1 + \frac{\Delta P_d}{\Delta P_0} \right)^n \)
Model

Filtration through a porous medium

\[
J = \frac{(P_F - P_P)}{\mu(R_m + R_d)}
\]

(Darcy’s law)

Axial pressure drop

- **Retentate side**
 \[
 \frac{\partial P_F}{\partial z} = -\frac{8\mu Q}{\pi r_i^4 N_0}
 \]
 (Hagen–Poiseuille equation)

- **Permeate side**
 \[
 \frac{\partial P_P}{\partial z} = -\frac{8\mu (r_M + N_0 r_o)^2}{\pi (r_M^2 - N_0 r_o^2)^3} U
 \]
 (modified Hagen–Poiseuille equation)

Axial flow rate

- **Retentate side**
 \[
 \frac{\partial Q}{\partial z} = -2N_0\pi r_i J
 \]
 (Continuity equation)

- **Permeate side**
 \[
 \frac{\partial U}{\partial z} = -\frac{\partial Q}{\partial z}
 \]
 (Mass balance)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
<th>Physical meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>r_i</td>
<td>1.4×10^{-4}</td>
<td>m</td>
<td>inner radius of a single hollow fiber</td>
</tr>
<tr>
<td>r_o</td>
<td>1.8×10^{-4}</td>
<td>m</td>
<td>outer radius of a single hollow fiber</td>
</tr>
<tr>
<td>r_M</td>
<td>1.02×10^{-3}</td>
<td>m</td>
<td>inner radius of membrane module</td>
</tr>
<tr>
<td>N_0</td>
<td>12</td>
<td></td>
<td>number of hollow fiber</td>
</tr>
<tr>
<td>A_c</td>
<td>7.4×10^{-7}</td>
<td>m2</td>
<td>overall cross section area of hollow fiber bundle</td>
</tr>
<tr>
<td>L</td>
<td>0.27</td>
<td>m</td>
<td>length of hollow fiber</td>
</tr>
<tr>
<td>L_{ext1}</td>
<td>0.4</td>
<td>m</td>
<td>length of the extended tubing at the retentate port</td>
</tr>
<tr>
<td>L_{ext2}</td>
<td>0.3</td>
<td>m</td>
<td>length of the extended tubing at the permeate port</td>
</tr>
<tr>
<td>r_{ext1}</td>
<td>1.0×10^{-3}</td>
<td>m</td>
<td>inner radius of the extended tubing at the retentate port</td>
</tr>
<tr>
<td>r_{ext2}</td>
<td>1.0×10^{-3}</td>
<td>m</td>
<td>inner radius of the extended tubing at the permeate port</td>
</tr>
<tr>
<td>μ_o</td>
<td>1.0×10^{-3}</td>
<td>Pa\cdots</td>
<td>dynamic viscosity of shell side fluid</td>
</tr>
<tr>
<td>μ</td>
<td>1.2×10^{-3}</td>
<td>Pa\cdots</td>
<td>viscosity of permeate</td>
</tr>
<tr>
<td>ϕ_b</td>
<td>1.0×10^{-4}</td>
<td></td>
<td>solid fraction in bulk flow</td>
</tr>
<tr>
<td>R_m</td>
<td>4.7×10^{11}</td>
<td>m$^{-1}$</td>
<td>intrinsic membrane resistance</td>
</tr>
<tr>
<td>α_0</td>
<td>6.0×10^{14}</td>
<td>m$^{-1}$</td>
<td>normalized specific film resistance</td>
</tr>
<tr>
<td>n</td>
<td>0.85</td>
<td></td>
<td>compressibility factor</td>
</tr>
<tr>
<td>ϕ</td>
<td>0.5</td>
<td></td>
<td>solid fraction of deposit layer</td>
</tr>
</tbody>
</table>

Parameters

- Direct measurement/manufacturing information
- Pure water flux
- Fitting model to experimental data
Validation (BSA, Single Pass)

Inlet ΔP_0 vs. t

Q_p vs. t

- Calculated
- Measured

$kPa
\times 10^{-7} m^3/s

Time (min)

Time (min)
Optimization of Membrane Geometry: Deposit Layer

Deposit layer thickness

\[\delta_{ave} \]

\[\times 10^{-5}\text{ m} \]

Based on chicken extract

\[Q_0 \times 10^{-6}\text{ m}^3/\text{s} \]

Defining

\[\lambda = \frac{L}{r_M} \]

Non-uniformity of layer

\[(\delta_{max} - \delta_{min})/\delta_{ave} \]

Increasing deposition

Increasing fiber length

Increasing flowrate

Fiber length / radius
Conclusions
Fouling Phenomena in Cross-flow Filtration of Viable Bacteria

Hydrodynamic model
- developed/validated for hollow fiber, crossflow microfiltration
- correlated with membrane length to radius diameter for transmembrane pressure, flux and deposit layer formation.
- extrapolated to obtain flux, pressure and deposition layer thickness as a function of time and volumetric flow rate of feed suspension for different hollow fiber lengths
- used to identify local optima of membrane geometric design

Experimental Validation and Applications
- Food pathogen detection in 8 hrs
- Homogenized meats and vegetables (disrupts biofilms)
- Fruit, water, leafy greens