Rapid Separation and Concentration of Bacterial Pathogens in Foods

Wan-Tzu Chen 1,3, Rick Hendrickson 3, Tao Geng 2, Arun Bhunia 2, Michael R. Ladisch 1,3,4

1Department of Biomedical Engineering
2Department of Food Science
3Laboratory of Renewable Resources Engineering
Integrative Center of Biotechnology and Engineering
4Department of Agriculture and Biological Engineering
Purdue University
Acknowledgement

This research was supported through a cooperative agreement with the ARS of the United States Department of Agriculture project number 1935-42000-035

- Dr. Richard Linton (FSEC at Purdue University)
- Dr. Rashid Bashir
- Debby Sherman and Chia-Ping Huang
- LORRE group
Outline

- Introduction
- Objectives
- Materials and Methods
- Results
- Conclusions
Introduction

Foodborne Pathogens
- Cause diseases associated with food
- Millions of people get ill annually
- Food samples are complex with interfering substances
- Conventional detection techniques are too costly and time-consuming
Introduction

- *Listeria monocytogenes*
 - Gram-positive, rod-shaped bacterium
 - Highly acid/salt-resistant
 - Cause listeriosis
 - Average death rate of 20~30%
 - Especially harmful for pregnant women
 - Occur in milk, cheese and ready-to-eat dairy food via post-processing contamination
Overall Objective

A rapid detection procedure based on a silicon-based chip system
Biochip Project

- Our approach:

 Sample preparation from foods. Concentrate bacteria for 10000x

- Conventional approach:

 Up to a week for identification

Timely result with Biochip within several hours
Research Goals

- Separate target microorganisms from interfering substances like proteins and lipid
- Concentrate by 10000x in 10 min to avoid time-consuming culture step of 24 hours
- Keep target microorganisms alive for identification
- Recover microorganisms efficiently
Materials and Methods

- Membrane filtration of spiked samples
- Hotdog juice preparation
- Efficiency of recovering and concentrating target microorganisms
Membrane Filtration

- Widely used in separation, concentration and recovery of biomolecules
- Simplify the procedures of diluting and concentrating
- Surfactant/Enzyme proved to improve filtration rate

Peterkin et al
~700 cells/ml × 50 ml

Assumption: 1 mg = 1 µl

Each membrane contains ~15 µl of liquid

By membrane filtration, 10^4 cells can be concentrated inside 15 µl of liquid
How do we get them all off?
Surfactant Effects

- Non-ionic surfactant
- Reduce the surface tension of liquid
- Prevent *Listeria* from sticking on the membrane
Inoculated hotdog juice
700 cells/ml

Different volumes are filtered with syringe

Membrane filter

Membrane filters are immersing in 0.5 ml of PBS containing 1% Tween 20

Filtrate

Plate out on MOX agar

Bradford protein assay
Hotdog Juice Preparation

• 1 pack of hotdog immerse into 250 ml of PBS (pH 7.4)
• Use stomacher bag to massage the hotdogs
• Incubate for 2 hours
• Filter unit with 0.2 µm pores of cellulose nitrate (Sterilization)
Membrane Filters

<table>
<thead>
<tr>
<th></th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nylon</td>
<td>-(CH$_2$-CH$_2$-CH$_2$-CH$_2$-CH$_2$-CH$_2$-CONH-)$_n$-</td>
</tr>
<tr>
<td>PVDF</td>
<td>-(CH$_2$-CF$_2$-)$_n$-</td>
</tr>
<tr>
<td>Mixed Cellulose</td>
<td>Cellulose nitrate and cellulose acetate</td>
</tr>
<tr>
<td>Polycarbonate</td>
<td>-(O- O-C(CH$_3$)$_2$-O- CO-)$_n$-</td>
</tr>
</tbody>
</table>
Results

- Preliminary tests
- Bradford Protein Assay of filtrates
- *Listeria* concentration calculated from plating-out
Plate count for 0.45\(\mu\text{m}\) retentate

Theoretical number of bacteria
- Polycarbonate
- Nylon
- Mixed Cellulose
- PVDF
Membrane Filters Properties

Nylon membrane

PVDF membrane
Membrane Properties

Polycarbonate membrane
Permeate Assay

Protein Conc (mg/ml)

Polycarbonate 0.4 um
Mixed Cellulose 0.45 um
Control-blank Hotdog juice

Filtered volumes (ml)

10 ml
50 ml
Tween 20 Effect

<table>
<thead>
<tr>
<th>PC</th>
<th>Recovery percentage (%)</th>
<th>Mixed Cellulose</th>
<th>Recovery percentage(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4 um</td>
<td></td>
<td>0.45 um</td>
<td></td>
</tr>
<tr>
<td>Without</td>
<td>5.27</td>
<td>1 ml</td>
<td>3.44</td>
</tr>
<tr>
<td>Tween</td>
<td>65.36</td>
<td></td>
<td>70.41</td>
</tr>
<tr>
<td>1 ml</td>
<td></td>
<td>5 ml</td>
<td>5.05</td>
</tr>
<tr>
<td></td>
<td>5.27</td>
<td></td>
<td>86.28</td>
</tr>
<tr>
<td>5 ml</td>
<td></td>
<td>5 ml</td>
<td>5.05</td>
</tr>
<tr>
<td></td>
<td>5.27</td>
<td></td>
<td>86.28</td>
</tr>
<tr>
<td>10 ml</td>
<td>8.44</td>
<td>10 ml</td>
<td>4.61</td>
</tr>
<tr>
<td></td>
<td>67.68</td>
<td></td>
<td>38.03</td>
</tr>
<tr>
<td>25 ml</td>
<td>8.99</td>
<td>25 ml</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td>48.35</td>
<td></td>
<td>13.94</td>
</tr>
<tr>
<td>50 ml</td>
<td>10.78</td>
<td>50 ml</td>
<td>4.82</td>
</tr>
<tr>
<td></td>
<td>72.24</td>
<td></td>
<td>58.48</td>
</tr>
</tbody>
</table>
Concentration Factor

- Expressed by concentration ratio

\[
\frac{\text{Listeria concentration after filtration (cells/ml)}}{\text{Listeria concentration before filtration (cells/ml)}}
\]
How Concentrated Are They?

Concentration factors

Filtered volumes (ml)

- Polycarbonate 0.4 um
- Mixed cellulose 0.45 um
- Expected concentrated factors
Pore Sizes Effects

Filtered volumes (ml)

- Polycarbonate 0.4 um
- Polycarbonate 0.2 um
Pore Sizes Effects (cont.)

- **Mixed cellulose 0.45 um**
- **Mixed cellulose 0.22 um**

Filtered volumes (ml):
- 1 mL
- 5 mL
- 10 mL
- 25 mL
- 50 mL

Concentration factors
Conclusions

- Membrane filtration can easily concentrate *Listeria monocytogenes* into small volumes and separate interfering substances from microorganisms
- Tween 20 treatment facilitates *Listeria* recovery
- Recovery increases as pore sizes decrease
- Time taken is only 2 hours compared to traditional culture steps
Questions?