Oligosaccharide Hydrolysis in Plug Flow Reactor using Strong Acid Catalyst

Young Mi Kim, Nathan Mosier, Rick Hendrickson, and Michael R. Ladisch

Laboratory of Renewable Resources Engineering
Department of Agricultural and Biological Engineering
Purdue University

Presented at 27th Symposium on Biotechnology for Fuels and Chemicals
Denver, CO May 4, 2005
Acknowledgements

• Material in this work supported by:
 DOE Grant # DE-FG36-04GO14220
 DOE Contract # DE-FC36-01GO11075
 USDA Grant # USDA-IFAFS 00-52104-9663

• For gift of catalysts
 We thank
 Rohm and Haas (Amberlyst 35W)
 Mitsubishi Chemical (Diaion resins)
 Dow Chemical (Dowex resins)

• Aventine Renewable Energy for liquid and solid pretreated fiber streams (Gary Welch)
Acknowledgements

Charles Wyman and CAFI Group

LORRE Members

Linda Liu, HPLC analysis
Joan Goetz, Composition Analysis
Winnie Chen, Comments
Outline

• Goal
• Strong Acid Cation Exchanger
• Effect of Resin Crosslinking and Particle Size
• Economic Evaluation
• Conclusions
Motivation

Fuel Ethanol

• Annual U.S. ethanol production capacity from corn will reach 4 billion gallons in 2005 (RFA, 2005)\(^1\)

• Lignocellulosics are potential source of ethanol

• Estimated production cost from cellulose to be from $1.15 to $1.43/ gal (Wooley et al, 1999)\(^2\)

• Enzyme cost contributes 20-30 ¢/ gal to the production cost of ethanol (Williams and Bryan, 2005)\(^3\)

2. Wooley, R; Ruth, M.; Glassner, D; Sheehan, J. Biotechnology Progress, Vol. 15, pp. 794-803, 1999
Goal of Research

- Solid acid catalysts for saccharification of oligosaccharides
- Study mechanisms of solid acid catalysis
- Reduce cost of saccharification to 10¢/gal
Pretreatment Forms Oligosaccharides

Corn Fiber → Pretreatment

Water → Pretreatment

Liquid with Dissolved Oligosaccharides (Glucan, Xylan) → Solids

Pretreatment → Corn Fiber
Pretreatment of Corn Fiber

Pressure cooking in water

- Solubilize hemicellulose and glucans
 (Weil et al, 1998)1

- Minimize monosaccharide formation and loss of sugar due to further degradation
 (Weil et al, 1997)2

Composition of Corn Fiber

<table>
<thead>
<tr>
<th>Component</th>
<th>% of dry weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucan (Cellulose)</td>
<td>14.3</td>
</tr>
<tr>
<td>Glucan (Starch)</td>
<td>23.7</td>
</tr>
<tr>
<td>Xylan/Galactan</td>
<td>16.8</td>
</tr>
<tr>
<td>Arabinan</td>
<td>10.8</td>
</tr>
<tr>
<td>Protein</td>
<td>11.8</td>
</tr>
<tr>
<td>Lignin</td>
<td>8.4</td>
</tr>
<tr>
<td>Acetyl</td>
<td>NA</td>
</tr>
<tr>
<td>Ash</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Composition of Liquid from Corn Fiber Pretreated at 160 ºC, 20 min

9.6 g of Corn Fiber + 24.1 ml of DI water
- 16% Solids in Liquid (160 g/L)
Stainless steel tube reactor
- total vol. : 35 ml

<table>
<thead>
<tr>
<th>Dissolved in de-ionized water (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligosaccharides (Glucan, Xylan, Arabinan)</td>
</tr>
<tr>
<td>Monosaccharides</td>
</tr>
<tr>
<td>Proteins</td>
</tr>
<tr>
<td>HMF, Furfural</td>
</tr>
</tbody>
</table>
Liquid Clean-up

- Proteins and minerals in pretreated liquid deactivate acid groups of catalyst
- Precondition of corn Fiber pretreated liquid to remove proteins and minerals

Liquid from Pretreated Corn Fiber

Protein In : 4.9 ± 0.8 g/L

2%, A35, Room Temp.

Preconditioning

Protein Out : 0 g/L
This Work: Fixed Bed Catalysis for Monosaccharide Formation

Cleaned-up Liquid with Dissolved Glucan Xylan Arabinan

Strong Cation Exchange Resin

Glucose Xylose Arabinose
Catalyst

Gel Type
10-20 Å (Dorfner, 1972)
4-10 % Crosslinked

Macroreticular Type
200-250 Å
A35

Dorfner, K., Ion exchangers: properties and applications, Ann Arbor Science, 1972, p. 34
Liquid from Pretreated Corn Fiber before and after Hydrolysis (Catalyst: Dowex 50WX2)

HPLC chromatogram using HPX-87H column

Retention Time (min)

1. Oligosaccharides (DP >2)
2. Cellobiose
3. Xylobiose
4. Glucose
5. Xylose
6. Arabinose

Before Hydrolysis
After Hydrolysis
Strong Acid Cation Exchangers Screened as Possible Catalysts

<table>
<thead>
<tr>
<th>Resin Type</th>
<th>Moisture Content (%)</th>
<th>Ion Exchange Capacity (meq / g dry resin)</th>
<th>Acid Density (M) (25 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A35</td>
<td>Macro-Reticular</td>
<td>52</td>
<td>5.12</td>
</tr>
<tr>
<td>50WX2</td>
<td>Gel (2% cross linking)</td>
<td>82</td>
<td>6.4</td>
</tr>
<tr>
<td>SK104</td>
<td>Gel (4% cross linking)</td>
<td>71</td>
<td>5.0</td>
</tr>
<tr>
<td>SK110</td>
<td>Gel (10% cross linking)</td>
<td>48</td>
<td>5.4</td>
</tr>
</tbody>
</table>
Effect of Resin Cross Linking and Resin Type
Maltooligosaccharide Hydrolysis,
(2 g/L, MW=800, at 130 °C, R_p =1.05 mm)

Glucose Yield (%) = 100 x [G] / [Oligo]_t=0

Space Time (g catalyst min/cm^3)
Effect of Resin Particle Size
Maltooligosaccharide Hydrolysis,
(SK104, $R_p = 1.05 \text{ mm or 0.55 mm, at 130 } ^\circ\text{C}$)

![Graph showing glucose yield vs. space time for 0.55 mm and 1.05 mm particle sizes.](image-url)
Kinetic Expressions

Oligosaccharides (P) \[k_1 \rightarrow \text{Monomeric Sugars (G)} \]
\[k_2 \rightarrow \text{Degradation Products (D)} \]

\[
k_1 = \eta_1 \cdot K_1 \cdot [H^+]^m \cdot \exp\left(\frac{-E_1}{RT}\right)
\]

\[
k_2 = \eta_2 \cdot K_2 \cdot [H^+]^n \cdot \exp\left(\frac{-E_2}{RT}\right)
\]

\[
\frac{k_1}{k_2} \uparrow \quad \text{Sugar Yield} \uparrow
\]

\[
\eta = \frac{\text{rate with diffusion resistance}}{\text{rate without diffusion resistance}} = \frac{3}{\phi} \left(1 - \frac{1}{\tanh \frac{1}{\phi}}\right)
\]

\[
\phi = R_i \sqrt{\frac{k_1}{D_{eff}}}
\]

\[k= \text{Apparent rate constant, cm}^3/\text{g catalyst·min} \]
Factors affecting Sugar Yield

If pore diffusion resistance is important, to increase sugar yield,

\[\frac{k_1}{k_2} \uparrow \eta_1 \uparrow \phi = R_i \sqrt{\frac{k_1}{D_{eff}}} \downarrow \]

\(R_i \) (Resin Particle Size) \downarrow

\(D_{eff} \) (Effective Diffusivity) \uparrow

= f (degree of cross-linking, pore size, pore tortuosity)

Less Diffusion Resistance
Dowex® 50WX2

- Size: 100-200 mesh (75-150 µm)

- Gel type strong cation exchange resin (2% Cross-Linked)

- Tested for hydrolysis of cellobiose and oligosaccharide from corn fiber pretreated liquid
Cellobiose Hydrolysis

50WX2 (2% Crosslinked Gel type) and A35 (Macroreticular)

\[
\begin{align*}
G-G & \quad k_1 \quad 2G \quad k_2 \quad HMF
\end{align*}
\]

- 50WX2 (150 °C, \(k_1/k_2 = 370 \))
- 50WX2 (130 °C, \(k_1/k_2 = 520 \))
- A35 (130 °C, \(k_1/k_2 = 51 \))
Hydrolysis of Pretreated Corn Fiber Liquid
(Preconditioned using 2% A35, 50WX2, 150 °C)

Space Time (g catalyst min/cm³)

Remaining Oligosaccharides
Fermentable Sugars, and Sugar Loss to Degradation Products (%)

Sugar Yield
Degradation Products
Remaining Oligosaccharides
Deactivation of Resins

- Desulfonation: Irreversible deactivation of resin through loss of sulfonic groups occurring at above 120°C

- Half life of 50WX2 at 150°C: 150 hrs

- Fouling: by irreversible adsorption of degradation products or unremoved proteins

First Estimate Incremental Cost of Catalyst per Gal of EtOH Produced from Glucose

- $10/ lb catalyst
- $5/ lb catalyst
- $2/ lb catalyst
- $1/ lb catalyst
Estimated Incremental Cost of Catalyst per Gal of EtOH Produced from Glucose

- Feed Concentration : 50 g/L
- Hydrolysis using 50WX2 at 150 °C, Space Time=0.85 g catalyst min/ cm³
 Conversion :90%
 Sugar Yield : 80%
- Assume all fermentable sugars present as glucose

<table>
<thead>
<tr>
<th></th>
<th>No deactivation</th>
<th>Deactivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose Produced after 150 hr (lb glucose/ lb catalyst)</td>
<td>970</td>
<td>700</td>
</tr>
<tr>
<td>Incremental Cost (¢/ gal Ethanol)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For $2/lb catalyst</td>
<td>3.0</td>
<td>4.1</td>
</tr>
<tr>
<td>For $5/lb catalyst</td>
<td>7.4</td>
<td>10.2</td>
</tr>
</tbody>
</table>
Conclusions

• Oligosaccharide hydrolysis is diffusion controlled.
• Sugar yield increases as % cross-linking and size of resin particle decrease (consistent with diffusion control).
• 90% conversion and 80% of sugar yield were achieved using 50WX2 resin at
 150 °C
 Space time = 0.85 g catalyst min/cm³.
• Improvements in catalyst life and selectivity are required.