Optimal Policy for Plug-In Hybrid Electric Vehicles Adoption

IAEE 2014

Presented By:
Emrah Ozkaya
Ph.D. Candidate, Industrial Engineering

Joint work with:
Doug Gotham, Andrew Liu and Paul Preckel

Funded by:
Indiana Utility Regulatory Commission through State Utility Forecasting Group (SUFG)

June 17, 2014
• Problem Statement
• Methodology
• Results
• Conclusion & Future Work
Motivation

• Consumers’ adoption of energy-efficient technologies

• Government’s role
 • Rebates, tax credits, subsidies, loan guarantees,…

• Government’s goals
 • Energy security and independence
 • Pollution prevention
 • Sustainability

• The challenge?
 • Solyndra, Beacon Power, Konarka,…
Motivation

• The proposal
 • Build a decision aid tool for policy makers
 • To further our understanding of the dynamics between consumers' adoption of energy-efficient technologies and government intervention efforts
 • To capture system-wide and local impacts of policies
 • An integrated energy-system model

• Why PHEVs?
Policies of Interest

Problem Statement

- **Market penetration target**
 - Subsidy/Tax Break
 - Tax on conventional vehicle users
 - Penalties on manufacturers
 - CAFE Standards
 - California’s ZEV Program

- **GHG emissions reductions target**
 - Carbon Tax
 - Cap and Trade
• Problem Statement
• Methodology
• Results
• Conclusion & Future Work
Integrated Energy System Model

• Integrate a PHEV adoption model with an energy system model to devise efficient energy-efficiency policies
 • Track impact of one sector on the others

• Iterative approach
PHEV Adoption Model

- Based on discrete choice analysis
 - Traced back to the 70s [McFadden]
 - Models choices made by people among a finite set of alternatives
 - Choice behavior based on the attributes of the individual and alternatives
 - Calculates the probability that a person chooses a particular alternative
 - Based on utility theory
 - Has several variations based on:
 - Number of available alternatives
 - Binomial choice
 - Multinomial choice
 - Model specification
 - Logit
 - Probit
PHEV Adoption Model: Formulation

- Based on discrete choice analysis (Binary Logit model)

\[
x_{it+1} = \delta_{it} x_{it} + d_{it} (x_{it}, s_{it}) \quad \forall \ i, t = 1, \ldots, T - 1
\]

\[
PHEV\text{ Demand} = \text{Market Size} \times \text{PHEV Purchase Probability}
\]

\[
d_{PHEV_t}(x_{CV_t}, x_{PHEV_t}, s_{PHEV_t}) = M_t \left\{ \frac{1}{1 + e^{aD\Delta TOC - bD \log \left(\frac{x_{PHEV_t}}{x_{CV_t}} \right) + cD}} \right\} \quad \forall \ t
\]

Total Vehicle Ownership Cost = Purchase Price + O&M Cost – Government Subsidy

\[
TOC_{it}(s_{it}) = P_{it} + OM_{it} - s_{it} \quad \forall \ i, t
\]

\[
P_{PHEV_t} = P_{PHEV_1} \left(\sum_{k=1}^{t-1} d_{PHEV_k} \right)^{-b_L} \quad \forall \ t = 2, \ldots, T
\]

\[x_{it}, s_{it} \geq 0 \quad \forall \ i, t\]
PHEV Adoption Model: Parameter Estimation

- **Challenges and assumptions**
 - Limited history of annual sales data for PHEVs
 - Use hybrid vehicle history for parameter estimation
 - Classify available vehicles into two categories
 - Conventional vehicles and PHEVs

- **Data sources**
 - Market size, vehicle purchase price, efficiency and stock
 - EIA’s Annual Energy Outlook reports
 - Annual miles driven, vehicle retirement rates and maintenance costs
 - DOE’s Transportation Energy Databook and Quality Metrics report
Government's Optimal Subsidy Problem

- Cost minimization approach

Model

Minimize Total Subsidy Cost
(Subsidy per Vehicle x Number of Vehicles Demanded)

\[
\min TSC(x_{lt}, s_{lt}) = \sum_{i=1}^{2} \sum_{t=1}^{T} r^{t-1}s_{lt}d_{lt}(x_{lt}, s_{lt})
\]

s. t.

Target Percentage of PHEVs Constraint

Logit Model Constraints
Energy System Model

- Based on EPA’s National MARKAL Model
 - Bottom-up energy system model
 - Detailed technology representation and multiple sectors
 - Demand driven, multiperiod, linear programming optimization model
 - Least-cost path to user-provided demands and imposed policies
 - Can reflect pollutant emissions
 - Reference Energy System (RES)
OUTLINE

• Problem Statement
• Methodology
• Results
• Conclusion & Future Work
PHEV Adoption Model Results

- Three scenarios based on PHEV market share by 2045:
 - High Penetration: 50% PHEV share
 - Medium Penetration: 25% PHEV share
 - Low Penetration: 10% PHEV share

\[\text{Subsidy Amount} \]

- Word-of-mouth
- Learning-by-doing
Integrated Energy System Model Results

- Gasoline and electricity demand
 - Convergence achieved after 4 iterations
Integrated Energy System Model Results

- Electricity and gasoline prices
Integrated Energy System Model Results

- GHG Emissions

Transportation Sector GHG Emissions

System GHG Emissions

[Graphs showing GHG emissions from 2010 to 2045 for different penetration levels: High, Medium, Low, and Baseline.]
OUTLINE

• Problem Statement
• Methodology
• Results
• Conclusion & Future Work
Conclusion

• PHEVs are not economical \textit{without subsidies}

• Government should not give out the subsidies \textit{all up-front}

• \textbf{Minimal} impact on \textit{electricity prices}

• \textbf{Bigger} impact on \textit{gasoline prices}

• System GHG emissions heavily dependent on \textit{generation mix}
Future Work

- Impact of PHEV charging behavior
- State-level policy impact
- Improve the consumer choice model
 - Number of vehicle categories considered

Thank you!
Integrated Energy System Model

• Convergence metric
 • Similar to the metric used in EIA’s NEMS model
 • Qualitative metric, based on a 4-point grading scale
 • Compares deviations of convergence variables at each iteration with deviations from the previous iteration (as a percentage)
 • A grade point average (GPA) is given to each convergence variable based on the following grading metric

<table>
<thead>
<tr>
<th>Score (% basis)</th>
<th>Grade on 4-pt scale</th>
<th>Letter grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05 or less</td>
<td>4.0</td>
<td>A</td>
</tr>
<tr>
<td>0.20</td>
<td>3.0</td>
<td>B</td>
</tr>
<tr>
<td>0.50</td>
<td>2.0</td>
<td>C</td>
</tr>
<tr>
<td>1.00</td>
<td>1.0</td>
<td>D</td>
</tr>
<tr>
<td>1.50 or more</td>
<td>0.01</td>
<td>F</td>
</tr>
</tbody>
</table>

• Continue iterations until either a pre-specified number of iterations or inter-cycle convergence objective is met