

Presented by: Douglas J. Gotham State Utility Forecasting Group Energy Center Purdue University

> Presented to: IE590

February 13, 2012

- Established in 1985 at Purdue
- Initially tasked with developing an electricity forecasting modeling system for the state of Indiana
- Later tasked with annual renewable resource reports

Other SUFG Studies

- Environmental regulations
- Energy efficiency
- Deregulation
- Intermittent resources
- Risk management
- Natural gas

Why Forecast?

- Resource planning
- Resource allocation
- Determining rates

- Long-term forecasts typically cover several years and are determined by economic and demographic factors
- Short-term forecasts typically cover several hours and are determined by temporal and weather factors

Using the Past to Predict the Future

• What is the next number in the following sequences?

A Simple Example

Discovery Park

ENERGY CENTER

State Utility Forecasting Group (SUFG)

A Little More Difficult

Much More Difficult

Discovery Park

ENERGY CENTER

State Utility Forecasting Group (SUFG)

Much More Difficult

- The numbers on the previous slide were the summer peak demands for Indiana from 2000 to 2008
- They are affected by a number of factors
 - Weather
 - Economic activity
 - Price
 - Interruptible customers called upon
 - Price of competing fuels

Question

 How do we find a pattern in these peak demand numbers to predict the future?

- Time Series
 - trend analysis
- Econometric
 - structural analysis
- End Use
 - engineering analysis

Time Series Forecasting

- Linear Trend
 - Fit the best straight line to the historical data and assume that the future will follow that line
 - works perfectly in the 1st example
 - Many methods exist for finding the best fitting line; the most common is the least squares method

$$Y = \beta + \alpha X$$

Time Series Forecasting

- Polynomial Trend
 - Fit the polynomial curve to the historical data and assume that the future will follow that line
 - Can be done to any order of polynomial (square, cube, etc.) but higher orders are usually needlessly complex

$$Y = \beta + \alpha_1 X + \alpha_2 X^2 + \dots$$

Time Series Forecasting

- Logarithmic Trend
 - Fit an exponential curve to the historical data and assume that the future will follow that line
 - works perfectly for the 2nd example

$$Y = \beta \alpha^X$$

PURDUE

Good News and Bad News

- The statistical functions in most commercial spreadsheet software packages will calculate many of these for you
- These may not work well when there is a lot of variability in the historical data
 - A number of methods exist for dealing with variability, such as modeling by season and using smoothing or filtering techniques
- If the time series curve does not perfectly fit the historical data, there is model error.
 - There is normally model error when trying to forecast a complex system

Econometric Forecasting

- Econometric models attempt to quantify the relationship between the parameter of interest (output variable) and a number of factors that affect the output variable
- Example
 - Output variable
 - Explanatory variable
 - Economic activity
 - Weather (HDD/CDD)
 - Electricity price
 - Natural gas price
 - Fuel oil price

Estimating Relationships

- Each explanatory variable affects the output variable in a different way. The relationships (or sensitivities) can be calculated via any of the methods used in time series forecasting
 - Can be linear, polynomial, logarithmic, moving averages, …

$$Y = \beta + \alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3 + \dots$$

Relationships are determined simultaneously to find overall best fit

A Simple Example

 Suppose we have 4 sets of observations with 2 possible explanatory variables

scevery Park

Output Y	Variable X ₁	Variable X ₂
110	100	100
113	120	110
114	130	90
121	150	120

A Simple Example

- Including both variables provides a perfect fit
 - Perfect fits are not usually achievable in complex systems

$$Y = 0.2X_1 - 0.1X_2 + 100$$

End Use Forecasting

ENERGY CENTER

State Utility Forecasting Group (SUFG)

- End use forecasting looks at individual devices, aka end uses (e.g., refrigerators)
- How many refrigerators are out there?
- How much electricity does a refrigerator use?
- How will the number of refrigerators change in the future?
- How will the amount of use per refrigerator change in the future?
- Repeat for other end uses

scevery Park

The Good News

- Account for changes in efficiency levels (new refrigerators tend to be more efficient than older ones) both for new uses and for replacement of old equipment
- Allow for impact of competing fuels (natural gas vs. electricity for heating) or for competing technologies (electric resistance heating vs. heat pump)
- Incorporate and evaluate the impact of demand-side management/conservation programs

The Bad News

- Tremendously data intensive
- Primarily limited to forecasting energy usage, unlike other forecasting methods
 - Most long-term planning electricity forecasting models forecast energy and then derive peak demand from the energy forecast

Example

- State Utility Forecasting Group (SUFG) has electrical energy models for each of 8 utilities in Indiana
- Utility energy forecasts are built up from sectoral forecasting models
 - residential
 - commercial
 - industrial

Residential Model Sensitivities

10 Percent Increase In	Causes This Percent Change in Electric Use
Number of Customers	11.1
Electric Rates	-2.4
Natural Gas Price	1.0
Distillate Oil Prices	0.0
Appliance Price	-1.8
Household Income	2.0

Source: SUFG 2009 Forecast

Commercial Model Sensitivities

10 Percent Increase In	Causes This Percent Change in Electric Use
Electric Rates	-2.5
Natural Gas Price	0.2
Distillate Oil Prices	0.0
Coal Prices	0.0
Electric Energy-weighted Floor Space	12.0

Source: SUFG 2009 Forecast

Industrial Model Sensitivities

10 Percent Increase In	Causes This Percent Change in Electric Use
Real Manufacturing Product	10.0
Electric Rates	-4.8
Natural Gas Price	1.4
Oil Prices	0.9
Coal Prices	0.2

Source: SUFG 2009 Forecast

- Exogenous assumptions
 - forecast is driven by a number of assumptions (e.g., economic activity) about the future
- Stochastic model error
 - it is usually impossible to perfectly estimate the relationship between all possible factors and the output
- Non-stochastic model error
 - bad input data (measurement/estimation error)

Resource Planning

- Target reserve margin
- Loss of load probability (LOLP)
- Expected unserved energy (EUE)

Reserve Margin

Discovery Park

ENERGY CENTER

State Utility Forecasting Group (SUFG)

$$RM = \frac{capacity - demand}{demand} x100\%$$

- Reserve margins are relatively easy to use and understand, but may lead to uneconomical planning decisions
 - reserve margins do not account for differences in reliability for different generating units or for diversity of supply

- A probabilistic method that accounts for the reliability of the various sources of supply
- Given an expected demand for electricity and a given set of supply resources with assumed outage rates, what is the likelihood that the supply will not be able to meet the demand?
- Planner finds the amount of resources needed to keep the LOLP below a target level
 - industry standard is 1 event per 10 years

Expected Unserved Energy

- Similar calculation as for LOLP
- Instead of tracking the expectation that insufficient generation will be available, one tracks the cumulative amount of the shortfall
 - In LOLP, a 1MW shortfall is the same as a 100MW shortfall

Contact Information

- Doug Gotham
- gotham@purdue.edu
- 765-494-0851
- <u>http://www.purdue.edu/discoverypark/en</u>
 <u>ergy/SUFG/</u>