

The Evolution of Indiana's Supply and Demand for Energy

presented to

Indiana Conference on Energy Management
August 14, 2013

presented by

Doug Gotham
State Utility Forecasting Group

Electricity

Electricity Prices

- Electricity prices have been increasing nationally over the past decade.
- While Indiana's price is still below the national average, our relative advantage has been declining recently.

2001 Electricity Price (cents/kWh)

2006 Electricity Price (cents/kWh)

2011 Electricity Price (cents/kWh)

Electricity Demand

- At the bottom of the recession, utility sales in 2009 were below 2002 levels (combination of economy and cool summer)
- 2010 bounced back with a 6.7% increase in sales, primarily in the industrial and residential sectors (hot summer)
- 2011 similar to 2010 (slow economic growth offset by slightly milder weather)

Electricity Demand

- Slow demand growth can be expected in the future
 - rising electricity prices
 - utility demand-side management
 - customer-owned generation
 - efficiency standards

Net Metering

Source: IURC 2013 Net Metering Summary

Feed-in Tariffs

 IPL and NIPSCO feed-in tariff programs are essentially fully subscribed at 100 MW and 30 MW, respectively

IPL Feed-in Tariff

- 39 customers
- 100 MW
- All solar photovoltaics
 - all but 1MW are from installations above
 100 kW in size

NIPSCO Feed-in Tariffs

- 67 customers
- 30 MW
 - roughly half solar-half biomass, with a small amount of wind
- 18 MW in service and 12 MW in queue
- Another 10 MW of pending applications
 - since program is full, will only make it if someone drops out

Source: Van Buskirk, Robert. "History and Scope of USA Mandatory Appliance Efficiency Standards." (CLASP/LBNL).

Electricity Supply

- Coal still supplies the majority of the electricity in Indiana
 - roughly 82-85% in 2011, depending on whether you are looking at generation physically located in Indiana or generation supplying Indiana customers
- Natural gas and wind have increased noticeably

% of Indiana Generation from Various Sources

Environmental Regulations

- Recently finalized or proposed environmental regulations continue to put pressure on coal-fired generators
 - Cross-State Air Pollution Rule
 - Mercury and Air Toxics Standards
 - Greenhouse gases
 - Cooling water
 - Coal ash

Coal Retirements & Repowering

 Over 2,300 MW of Indiana's coal-fired generation is expected to be retired or switched to natural gas by 2016

Natural Gas

Henry Hub Gulf Coast Natural Gas Spot Price (\$/MMBTU)

Natural Gas Monthly Average Price (\$/mmBtu)

Lower Natural Gas Prices

- Natural gas prices have been lower in the last five years than they were in the period previous to that.
 - Mean price from 1997-2008: \$5.09/mmBtu
 - Mean price from 2009-now: \$3.76/mmBtu
 - These are in nominal dollars, so adjusting for inflation would increase the price difference

Natural Gas Prices

- The relationship between NG prices and oil prices have changed.
- Prior to 2009, oil prices and NG prices were highly positively correlated
 - Henry Hub vs. WTI crude shows a correlation coefficient of 0.81
- Since 2009, the correlation is actually negative
 - correlation coefficient is -0.33

Wet Gas

- Shale gas development has been focused on wet gas (includes petroleum liquids) instead of dry gas
- High petroleum prices lead to increased shale drilling, which leads to increased NG production, which lowers the NG price

Reduced NG Price Volatility

- Natural gas prices have become much more stable as well
 - Price variance from 1997-2008: 7.05
 - Price variance from 2009-now: 0.69
- Fuel switching for electricity generation
- No major supply disruptions

Annual Price Spread (max – min) (\$/mmBtu)

Note: 2013 is a partial year

Fuel Switching

- Over the past few years, there has been sufficient electricity generating capacity in the region to allow switching between natural gas-fired generators and coalfired generators depending on the NG price
 - An increase in NG price results in switching to coal, reducing demand for NG
 - A decrease in NG price results in switching from coal, increasing demand for NG

Fuel Switching

 As coal retirements occur due to economics, environmental regulations, and age, we may not have the flexibility to switch back and forth

NG Supply Diversity

- The development of unconventional sources has increased the geographic diversity of NG supply
 - less susceptible to single event disruptions, such as hurricanes
- In 2000, six states produced at least 1Tcf
- In 2011, nine states did

From 2007 to 2011

- U.S. production ↑ by 15%, while U.S. off-shore production ↓ by 30%
- PA production ↑ by 620%
- AR production ↑ by 300%
- ND production ↑ by 120%
- IN production ↑ by 150% (but still very small)

Conventional Gas Production (2009)

Source: Energy Information Administration based on data from HPDI, IN Geological Survey, USGS Updated: April 8, 2009

Shale Gas

Risks For The Future

- Environmental restrictions
 - water
 - earthquakes
- Increased demand
 - LNG exports
 - transportation
 - industrial feedstock/processes

From My Crystal Ball....

- Slower demand growth for electricity
- Increasing electricity prices
- Continued reduction in reliance on coal for electricity
- Reduced natural gas price volatility, at least in the short term

Further Information

- Doug Gotham
 - -765-494-0851
 - gotham@purdue.edu
- http://www.purdue.edu/dp/energy/SUFG/