

ENERGY CENTER State Utility Forecasting Group (SUFG)

Independent Load Forecast Workshop

Discevery Park

July 28, 2014

Topics

- Review of stakeholder comments
- Revised state econometric models
- Allocation factors to convert statewide annual energy to LRZ level annual energy
- Conversion from LRZ level annual energy to seasonal peak demand
- Next steps

Stakeholder Comments

 We received a number of comments after the first workshop. If there are any questions regarding the responses to those comments, please let us know. If you have comments, questions, or concerns at any time, please let us know.

Stakeholder Comments

- In some cases, we made adjustments to the models or approach based on the stakeholder comments
- In some cases, while the recommendation may have merit, we did not feel that we could implement it in Year 1 and will consider it in Year 2
- In some cases, we felt the recommended approach was not practical for some reason, such as lack of available data or insufficient resources

Minnesota Weather Station

- SUFG's use of the St. Cloud weather station for the MN state model
 - We re-examined the proximity of the St.
 Cloud and St. Paul stations to the population center and agreed that St. Paul is more appropriate
 - We re-formulated the MN model using the St. Paul station.

Revised State Models

• We made slight revisions to the following state econometric models

scevery Park

- IL (change in population data source)
- IA (change in population data source)
- KY (change in population data source)
- MN (change in weather station)

Discovery Park State Utility Forecasting Group (SUFG) **Dependent and Explanatory** Variables

ENERGY CENTER

Variables	Eviews name	Data Source
Dependent variable:		
Electricity sales	ELECTRICITY_SALES	EIA
Explanatory variables:		
Electricity prices	REAL_ELECTRICITY_PRICE	EIA*
Natural gas prices	REAL_NATURAL_GAS_PRICE	EIA*
Real personal income	REAL_INCOME	BEA*
Population	POPULATION	IHS Global Insight
Manufacturing employment	MANUFACTURING_EMP	BLS
Non-manufacturing employment	NON_MANUFACTURING_EMP	BLS
Non-farm employment	NON_FARM_EMP	BLS
Gross state product	REAL_GSP	BEA
Cooling degree days	CDD	NOAA
Heating degree days	HDD	NOAA

* Original data was in nominal dollars. SUFG converted it to real 2005 dollars using state level CPI from IHS Global Insight.

New Illinois Model

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Elasticity at 2012 (weather at Means)
C @MOVAV(REAL_ELECTRICITY_PRICE,5) REAL_INCOME/POPULATION NON_MANUFACTURING_EMP CDD HDD	57313.69 -2960.353 1117.896 0.007250 11.39225 2.500394	23795.24 732.7669 381.7323 0.003488 1.531595 0.855162	2.408619 -4.039966 2.928482 2.078529 7.438161 2.923883	0.0094 0.0531 0.0000	-0.166134 0.307317 0.260972 0.099273 0.099790
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.988629 0.985284 1325.211 295.5968 0.000000	S.D. dependent var Durbin-Watson stat		132802.6 10924.26 2.015528	8

IRDUE

9

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Elasticity at 2012 (weather at means)
C @MOVAV(REAL_ELECTRICITY_PRICE,5)	57564.28 -2976.033	23828.46 732.3127	2.415779 -4.063884	0.0272 0.0008	-0.167014
REAL INCOME/POPULATION	1114.134	382.9021	2.909710	0.0008	0.306283
NON MANUFACTURING EMP	0.007244	0.003500	2.070016	0.0540	0.260752
	11.41321	1.533661	7.441811	0.0000	0.099455
HDD	2.501311	0.857782	2.916023	0.0096	0.099827
R-squared	0.988580	Mean depen	dent var	132802.6	
Adjusted R-squared	0.985221	85221 S.D. dependent var		10924.26	
S.E. of regression	1328.060	60 Durbin-Watson stat		2.014057	
F-statistic	294.3155				
Prob(F-statistic)	0.000000				

ENERGY CENTER State Utility Forecasting Group (SUFG)

PURDUE

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Elasticity at 2012 (weather at means)
С	15314.01	4720.060	3.244453	0.0048	
REAL_ELECTRICITY_PRICE	-1649.176	354.3460	-4.654139	0.0002	-0.239605
REAL_INCOME/POPULATION	389.9282	159.4461	2.445518	0.0256	0.322735
REAL_GSP	0.152352	0.042107	3.618251	0.0021	0.431059
CDD	2.633157	0.670060	3.929732	0.0011	0.072200
HDD	0.719806	0.272836	2.638235	0.0173	0.113379
R-squared	0.992234	Mean dependent v	ar	38922.22	
Adjusted R-squared	0.989950	S.D. dependent va	r	5428.231	
S.E. of regression	544.1910	Durbin-Watson sta	t	1.790356	
F-statistic Prob(F-statistic)	434.3908 0.000000				10

11

Previous Iowa Model

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Elasticity at 2012 (weather at means)
C REAL_ELECTRICITY_PRICE REAL_INCOME/POPULATION REAL_GSP CDD HDD	15371.50 -1655.225 390.9441 0.151856 2.632238 0.719842	4715.051 354.6526 159.5598 0.042223 0.669726 0.272699	3.260093 -4.667174 2.450142 3.596505 3.930323 2.639696	0.0046 0.0002 0.0254 0.0022 0.0011 0.0172	-0.240484 0.323576 0.429654 0.072175 0.113385
R-squared Adjusted R-squared S.E. of regression F-statistic Prob(F-statistic)	0.992241 0.989959 543.9232 434.8220 0.000000	Mean dependent var S.D. dependent var Durbin-Watson stat		38922.22 5428.231 1.791950	

IRDUE

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Elasticity at 2012 (weather at Means)
С	-74279.80	9960.544	-7.457404	0.0000	
@MOVAV(REAL_ELECTRICITY_PRICE,3)	-2326.018	474.2090	-4.905047	0.0001	-0.160187
@MOVAV(REAL_NATURAL_GAS_PRICE,3)	994.1832	234.2793	4.243582	0.0005	0.067771
POPULATION	0.035164	0.002071	16.97781	0.0000	1.729506
CDD	3.616164	1.596908	2.264478	0.0369	0.054171
HDD	2.931803	1.002025	2.925877	0.0094	0.164439
R-squared	0.982525	Mean depender	nt var	80805.80	
Adjusted R-squared	0.977385	I		9725.946	
S.E. of regression	1462.621	Durbin-Watson		2.424052	
F-statistic	191.1598				10
Prob(F-statistic)	0.000000				12

ENERGY CENTER State Utility Forecasting Group (SUFG)

IRDUE

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Elasticity at 2012 (weather at means)
C @MOVAV(REAL_ELECTRICITY_PRICE,3)	-73242.26 -2333.131	9984.345 477.3511	-7.335710 -4.887662	0.0000 0.0001	-0.160677
@MOVAV(REAL_NATURAL_GAS_PRICE,3)	1010.142	235.3190	4.292652	0.0001	0.068859
POPULATION	0.034946	0.002073	16.85586	0.0000	1.718772
CDD	3.603448	1.607973	2.240987	0.0387	0.053980
HDD	2.915704	1.008896	2.889993	0.0102	0.163536
R-squared	0.982285	Mean depen	ident var	80805.80	
Adjusted R-squared	0.977075	S.D. dependent var		9725.946	
S.E. of regression	1472.608	3 Durbin-Watson stat		2.425481	
F-statistic Prob(F-statistic)	188.5297 0.000000				13

IRDUE

Variable	Coefficient	Std. Error	t-Statistic	Prob.	Elasticity at 2012 (weather at means)
С	9792.845	4056.166	2.414311	0.0273	
@MOVAV(REAL_ELECTRICITY_PRICE,3)	-751.6947	298.6641	-2.516857	0.0222	-0.084335
@MOVAV(REAL_NATURAL_GAS_PRICE,3)	338.9010	131.5096	2.577005	0.0196	0.030419
REAL_INCOME	0.000217	8.69E-06	24.99242	0.0000	0.694308
CDD	5.226810	0.975240	5.359510	0.0001	0.068711
HDD	1.443649	0.310209	4.653789	0.0002	0.180303
R-squared	0.993427	Mean depende	ent var	59548.41	
Adjusted R-squared	0.991494	4 S.D. dependent var		7398.364	
S.E. of regression	682.3407 Durbin-Watson stat		n stat	1.818326	
F-statistic	513.8751				
Prob(F-statistic)	0.000000				14

ENERGY CENTER State Utility Forecasting Group (SUFG)

IRDUE

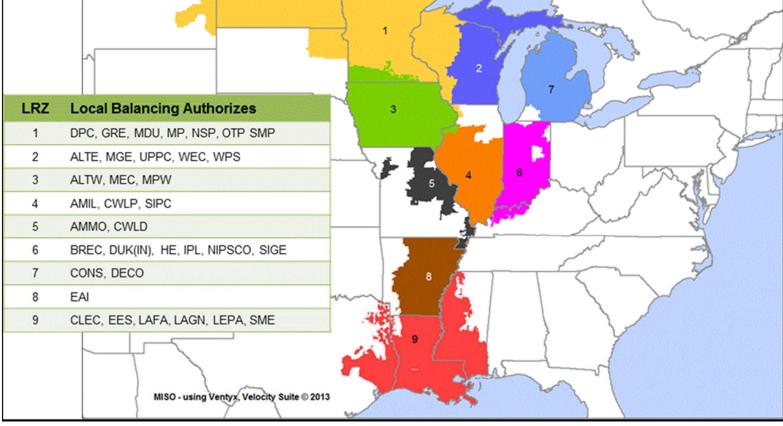
Variable	Coefficient	Std. Error	t-Statistic	Prob.	Elasticity at 2012 (weather at means)
С	7388.648	4235.610	1.744412	0.0991	
@MOVAV(REAL_ELECTRICITY_PRICE,3)	-654.4179	303.6498	-2.155173	0.0458	-0.073421
@MOVAV(REAL_NATURAL_GAS_PRICE,3)	453.7845	133.8691	3.389762	0.0035	0.040730
REAL_INCOME	0.000220	8.27E-06	26.56632	0.0000	0.703519
CDD	7.223193	1.357260	5.321893	0.0001	0.058357
HDD	1.405156	0.300272	4.679606	0.0002	0.198212
R-squared	0.993054	Mean depen	ident var	59548.41	
Adjusted R-squared	0.991011	•		7398.364	
S.E. of regression	701.4585	5 Durbin-Watson stat		1.934167	
F-statistic	486.0632				15
Prob(F-statistic)	0.000000				15

Allocation Factors

- Using EIA-861 data, we allocated retail sales (MWh) in each state to one of the MISO LRZs or as non-MISO
- We looked for consistency and trends in the shares over time
- We also compared metropolitan statistical area economic projections to state-level projections where appropriate
- Indiana and Kentucky have been combined (as have Montana and North Dakota) at the request of MISO staff

Unclassified Sales

- There are a handful of entities that either have no balancing authority listed in EIA-861 or list it as "Other"
 - Majority are retail power marketers in Texas
- We have classified those as non-MISO but have sought clarification
- We would be happy to provide the list to anyone that would like it


Let us know if any of them should be included

• We will adjust the allocation factors based on feedback on these sales

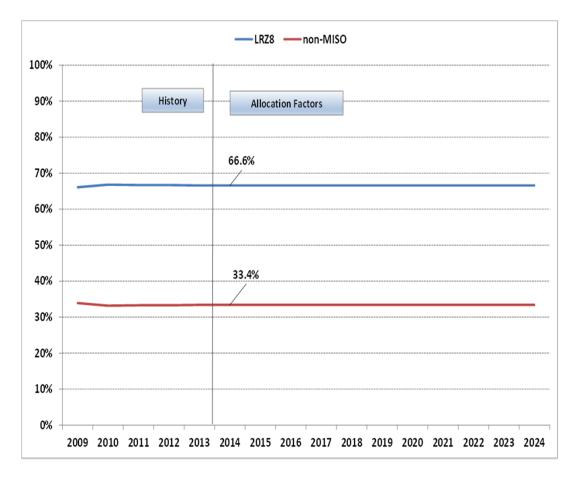
ENERGY CENTER

State Utility Forecasting Group (SUFG)

	State	State Level MISO Load (MWh) Fraction				
MISO LRZ	State	Average	2009	2010	2011	2012
	IA	1.8%	1.8%	1.8%	1.8%	1.7%
	IL	0.0002%	0.0002%	0.0002%	0.0002%	0.0002%
	MI	0.1%	0.1%	0.1%	0.1%	0.1%
1	MN	94.8%	94.8%	94.8%	94.9%	94.8%
	ND+MT	33.7%	32.9%	34.0%	34.5%	33.3%
	SD	24.7%	24.8%	25.1%	24.4%	24.4%
	WI	14.8%	15.0%	14.8%	15.1%	14.4%
2	MI	4.9%	4.3%	5.2%	5.3%	4.9%
2	WI	84.9%	84.7%	85.0%	84.7%	85.3%
	IA	90.8%	90.0%	90.9%	91.1%	91.3%
3	IL	1.4%	1.4%	1.4%	1.4%	1.4%
5	MN	1.3%	1.3%	1.3%	1.2%	1.2%
	SD	1.8%	1.8%	1.9%	1.8%	1.8%
4	IL	32.9%	32.5%	33.1%	33.3%	32.5%
5	MO	49.6%	48.8%	49.7%	49.5%	50.3%
7	MI	90.2%	90.1%	90.3%	90.0%	90.4%
8	AR	66.6%	66.1%	66.8%	66.7%	66.7%
6	IN+KY	47.8%	47.1%	47.4%	48.3%	48.4%
	LA	88.9%	88.7%	88.7%	88.7%	89.6%
9	MS	43.7%	43.9%	44.2%	43.6%	43.1%
	ТΧ	6.6%	6.3%	6.7%	6.7%	6.8%

19

PURDUE UNIVERSITY


ENERGY CENTER State Utility Forecasting Group (SUFG)

State Othing Forecasting Group (S

ARKANSAS

The blue line represents the MISO LRZ8 share in AR and the red line for the non-MISO share. The variation in the historical share is moderate (between 66.1% and 66.8%). Therefore, the allocation factor is held at the average of the historical values (66.6%).



ENERGY CENTER State Utility Forecasting Group (SUFG)

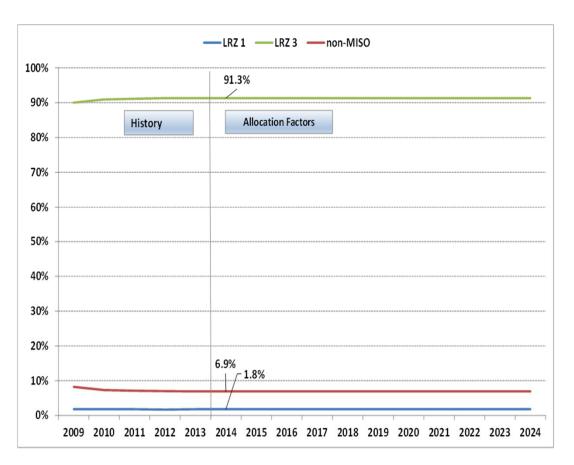
ILLINOIS

Based on the projections of the values for the model drivers for the state of Illinois and for the Chicago metropolitan statistical area, the non-MISO region is projected to grow slightly faster than the MISO region. The allocation factors for LRZ 1 (0.0002%) and LRZ 3 (1.4%) are held constant at their historical values. The allocation factor for LRZ 4 declines from 32.4% to 31.9% over the 10-year period to reflect the declining portion of statewide sales in the MISO footprint.

ENERGY CENTER State Utility Forecasting Group (SUFG)

INDIANA + KENTUCKY

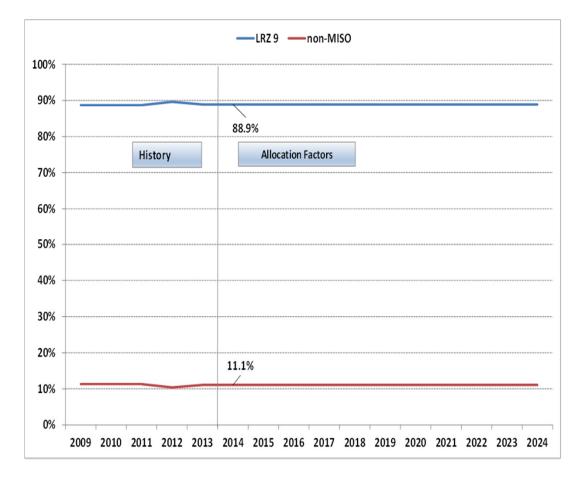
The historical share in the MISO footprint has risen throughout the observations (from 47.1% to 48.4%). The allocation factor reflects that growth in the future, growing to 48.8% and then leveling off.


ENERGY CENTER

State Utility Forecasting Group (SUFG)

IOWA

Historical values for LRZ 1 are all either 1.7% or 1.8%. The allocation factor is held at the average of the historical values (1.8%). For LRZ 3, the 2009 value (90.0%) is lower than the others, which have little variation. The allocation factor is held at the last observed value (91.3%).


ENERGY CENTER

State Utility Forecasting Group (SUFG)

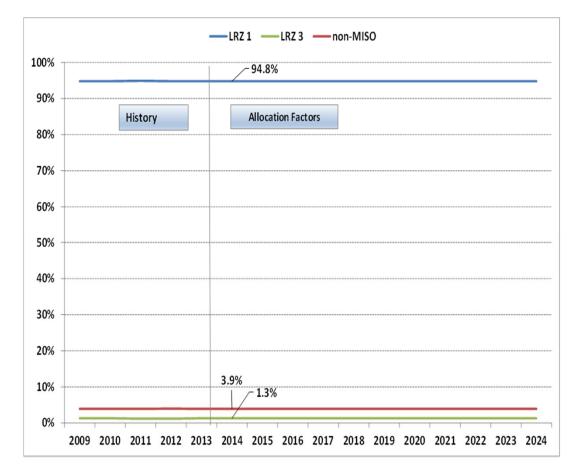
LOUISIANA

The historical shares have been consistent with a slight increase in 2012. The allocation factor is held at the average of the historical values (88.9%).

ENERGY CENTER State Utility Forecasting Group (SUFG)

MICHIGAN

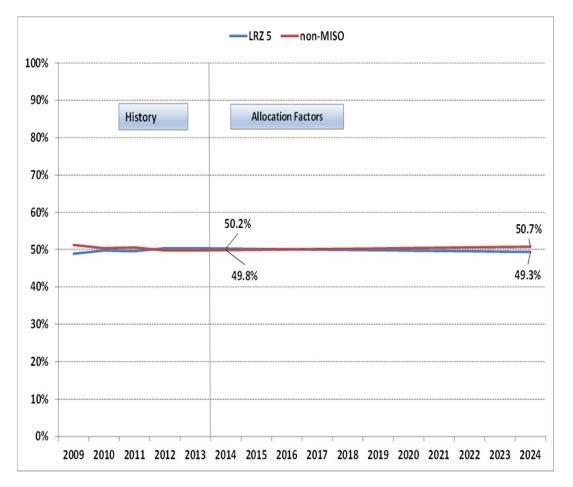
LRZ 1 has had a constant share (0.1%) and is held constant at that level. LRZ 2 has been consistent since a lower level in 2009 (4.3%). The allocation factor is held constant at the last historical observation (4.9%). The variation in LRZ 7 has been low (between 90.0% and 90.4%). The allocation factor is held at the average of the historical values (90.2%).


ENERGY CENTER

State Utility Forecasting Group (SUFG)

MINNESOTA

The variation in LRZ 1 has been very low (between 94.8% and 94.9%). The allocation factor is held at the average of the historical values (94.8%). The variation in I R7 3 has also been low (between 1.2% and 1.3%). The allocation factor is held at the average of the historical values (1.3%).



State Utility Forecasting Group (SUFG)

MISSOURI

Based on the projections of the values for the model drivers for the state of Missouri and for the St. Louis metropolitan statistical area, the non-MISO region is projected to grow faster than the MISO region. The allocation factor for LRZ 5 declines from 50.3% to 49.3% over the 10-year period to reflect the declining portion of statewide sales in the MISO footprint.

ENERGY CENTER State Utility Forecasting Group (SUFG)

MISSISSIPPI

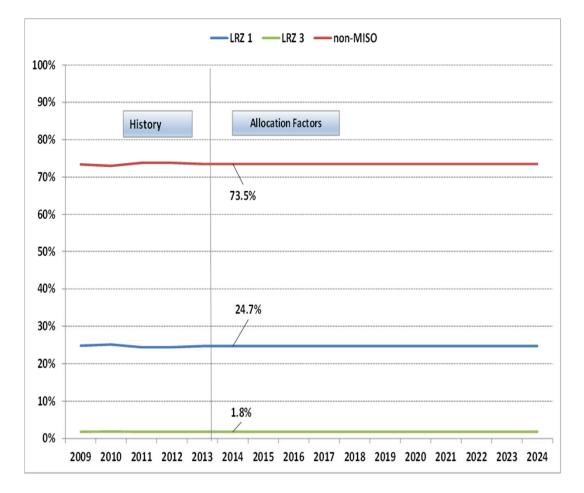
While there is some variation in the historical share (between 43.1% and 44.2%), there is no consistent pattern of growth or shrinkage. The allocation factor is held at the average of the historical values (43.7%).



ENERGY CENTER State Utility Forecasting Group (SUFG)

MONTANA + NORTH DAKOTA

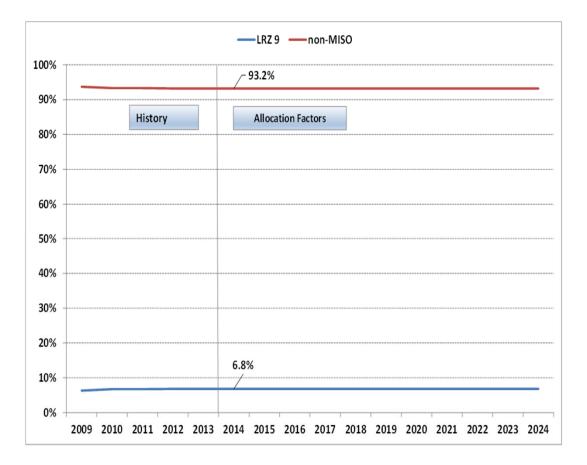
The share of sales in LRZ 1 dropped significantly in 2012 (from 34.5% to 33.3%) due to very strong growth in non-MISO utilities in the Bakken region. While strong growth is expected to continue in that region, the extreme growth (in excess of 50% in one year for some) is not expected to continue indefinitely. The allocation factor for LRZ 1 drops from the 2012 level to 32.1% before leveling off.


ENERGY CENTER

State Utility Forecasting Group (SUFG)

SOUTH DAKOTA

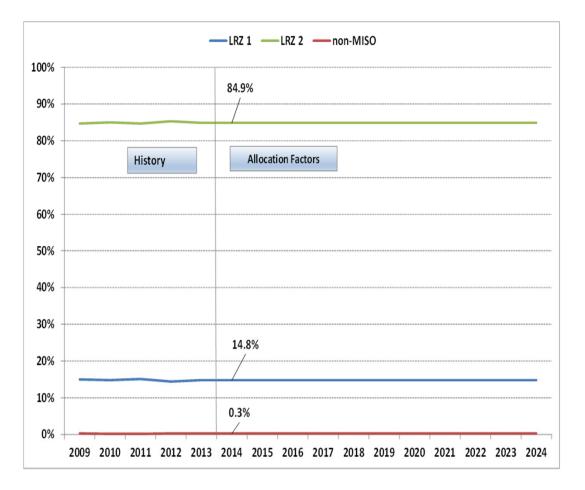
The variation in the historical share of I R7 1 is moderate (between 24.4% and 25.1%). The allocation factor is held at the average of the historical values (24.7%). The variation in the historical share of LRZ 3 is low (between 1.8% and 1.9%). The allocation factor is held at the average of the historical values (1.8%).


ENERGY CENTER

State Utility Forecasting Group (SUFG)

TEXAS

The variation has been very low (between 6.7% and 6.8%) since a lower level in 2009 (6.3%). The allocation factor is held constant at the last historical observation (6.8%).


ENERGY CENTER

State Utility Forecasting Group (SUFG)

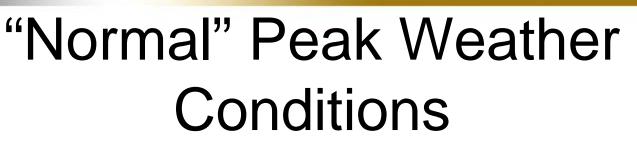
WISCONSIN

The variation in the historical share of I R7 1 is moderate (between 14.4% and 15.1%). The allocation factor is held at the average of the historical values (14.8%). The variation in the historical share of LRZ 2 is also moderate (between 84.7% and 85.3%). The allocation factor is held at the average of the historical values (84.9%).

ENERGY CENTER State Utility Forecasting Group (SUFG)

MISO LRZ	Stata	Allocation Factor				
	State	Basis	Result			
	IA	Historical average	Constant at 1.8%	1		
	IL	Historical average	Constant at 0.0002%			
	MI	Historical average	Constant at 0.1%			
1	MN	Historical average	Constant at 94.8%			
	ND+MT	Historical trend	Declining from 32.7% to 32.1%			
	SD	Historical average	Constant at 24.7%			
	WI	Historical average	Constant at 14.8%			
2	MI	Historical average	Constant at 4.3%			
2	WI	Historical average	Constant at 84.9%			
	IA	Last observed	Constant at 91.3%			
3	IL	Historical average	Constant at 1.4%			
5	MN	Historical average	Constant at 1.3%			
	SD	Historical average	Constant at 1.8%			
4	IL	Chicago vs. state growth	Declining from 32.4% to 31.9%			
5	MO	St. Louis vs. state growth	Declining from 50.3% to 49.3%			
7	MI	Historical average	Constant at 90.2%			
8	AR	Historical average	Constant at 66.6%			
6	IN+KY	Historical trend	Increasing from 48.6% to 48.8%			
	LA	Historical average	Constant at 88.9%			
9	MS	Historical average	Constant at 43.7%];		
	ТХ	Last observed	Constant at 6.8%]		

Energy to Peak Conversions


- Determine historical relationships between annual energy, summer/winter peak demand, and weather conditions at the time of peak
- Estimate the historical peak demand weather conditions for earlier years to determine normal peak demand weather

- We do not have hourly load data for earlier years

 Determine energy to peak demand conversion factors under normal peak demand weather

- We looked at how extreme weather conditions (temperature and heat index) historically affects hourly demand (relative to average demand levels) for summer and winter for each LRZ.
- This provides a numerical estimation of demand as a function of weather.

- We looked at hourly weather data for different stations within each LRZ
- We focused on hours when peak demands have occurred
 - not weekends or holidays
 - not night time
- Peak demand does not always occur on absolute max/min temperature
- Estimate the average weather conditions for peak demand

- Temperature was a better indicator of summer peak demand than heat index was
- Winter peak demand was more likely to occur at the minimum temperature in the southern LRZs than in the northern ones

Determine Conversion Factors

 Using the relationship between peak demand and weather developed in the first step and the normal peak demand weather conditions in the second step, we determined the conversion factors under "normal" weather.

Conversion Factors

 Multiply average hourly demand (annual demand divided by number of hours per year) to find summer/winter peak demand

LRZ	Summer	Winter
1	1.567	1.282
2	1.660	1.267
3	1.632	1.275
4	1.717	1.306
5	1.753	1.394
6	1.542	1.339
7	1.824	1.247
8	1.741	1.407
9	1.634	1.387

Weather Stations for Peaks

LRZ	Primary	Secondary
1	St. Paul, MN	Bismarck, ND; Fergus Falls, MN
2	Milwaukee, WI	Green Bay, WI; Marquette, MI
3	Des Moines, IA	Davenport, IA
4	Springfield, IL	Carbondale, IL
5	St. Louis, MO	
6	Indianapolis, IN	Evansville, IN; South Bend, IN
7	Lansing, MI	Grand Rapids, MI
8	Little Rock, AR	
9	Alexandria, LA	Houston, TX; Jackson, MS; New Orleans, LA

Next Steps

- Incorporate econometric model drivers (done)
- Run and evaluate state econometric models
- Adjust for energy efficiency
- Determine LRZ level energy and peak demand forecasts
- Determine MISO system energy and peak demand forecasts
- September workshop
- Develop forecast report