

ENERGY CENTER State Utility Forecasting Group (SUFG) DUE

Econometric Forecasting Overview

April 30, 2014

- Econometric models attempt to quantify the relationship between the parameter of interest (dependent variable) and a number of factors (explanatory variables) that affect the dependent variable.
- Example
 - Dependent variable
 - Electric energy
 - Explanatory variable
 - Economic activity
 - Weather (HDD/CDD)
 - Electricity price
 - Natural gas price

Estimating Relationships

 Each explanatory variable affects the output variable in a different way. The relationships (or sensitivities) can be calculated via a number of different methods

- Can be linear, polynomial, logarithmic, ...

$$Y = \beta + \alpha_1 X_1 + \alpha_2 X_2 + \alpha_3 X_3 + \dots$$

 Relationships are determined simultaneously to find overall best fit

A Simple Example

 Suppose we have 4 sets of observations with 2 possible explanatory variables

scovery Park

Output Y	Variable X ₁	Variable X ₂
110	100	100
113	120	110
114	130	90
121	150	120

ENERGY CENTER

State Utility Forecasting Group (SUFG)

A Simple Example

- Including both variables provides a perfect fit
 - Perfect fits are not usually achievable in complex systems

$$Y = 0.2X_1 - 0.1X_2 + 100$$

Finding a Good Fit

Discovery Park

NERGY CENTER

State Utility Forecasting Group (SUFG)

- A number of methods exist for finding the best fitting line, the most common is the ordinary least squares method
 - Ordinary least squares: find the line that minimizes the sum of the squares of the differences between the historical observations and the line
- Often, the "best" fit may not be desirable due to other statistical considerations
 - Some judgment is required to balance various factors

Regression Analysis

ENERGY CENTER

State Utility Forecasting Group (SUFG)

Source: Wikipedia.org

iscevery Park

Discovery Park

- In simple terms, model error is the difference between the actual observed dependent variable value and the value that would be derived from the model equation
- Forecasters try to keep model error low but some error is generally unavoidable

Serial Correlation & Heteroskedasticity

iscovery Park

IERGY CENTER

State Utility Forecasting Group (SUFG)

- Serial correlation occurs when the error terms from different time periods are correlated
- Heteroskedasticity occurs when the error terms have different variances
- These do not bias the model but results in a false level of accuracy
 - The model estimates may appear to be more precise than they actually are

Serial Correlation

Source: Limitations of the Classical Model, University of Rhode Island http://www.uri.edu/artsci/newecn/Classes/Art/306a/Outlines/Statistics/Out.Stats2e.html

Heteroskedasticity

iscevery Park

Heteroskedasticity in a simple, bivariate model.

Source: Introductory Econometrics, Cambridge University Press, 2005

Discavery Park

- R² the proportion of the variation in the dependent variable that is explained by the independent variables
- Adjusted R² a similar measure that penalizes for the inclusion of additional explanatory variables
- F-Statistic a significant F-test indicates that the R² is reliable and not a spurious result.

PURDUE UNIVERSITY

Estimating a Model

- Specify the explanatory variables to be used
- Software (EViews) will determine estimation and provide statistical information
- Repeat using other sets of explanatory variables

Possible Model Formulations

- There are a number of different formulations that can be considered
 - Linear vs. logarithmic
 - First differences (using the change in value between adjacent time periods instead of the values themselves)
 - Moving average or lagged prices
 - Adjust the number of historical observations to be used

Choosing a Model

iscovery Park

 We looked for models that provide a good fit (R² and Adjusted R² close to 1 and F-Statistic probability less than 0.05), pass the tests for serial correlation and heteroskedasticity, and contain an appropriate mix of explanatory variables with correct estimated coefficient signs.

Discovery Park

Statistical Tests

 The Durbin-Watson statistic is a check for first-order serial correlation. The statistic ranges from 0 to 4 with 2 meaning no serial correlation; less than 2 being evidence of positive serial correlation; and greater than 2 being evidence of negative serial correlation.

Discovery Park

 The Correlogram of Residuals and the associated Ljung-Box Q-Statistics up to 12 lags were also inspected to make sure there was no statistically significant serial correlation. (Q-Statistic associated probabilities are greater than 0.05)

Statistical Tests

 The White test was used to check for heteroskedasticity. The test statistic's associated probabilities should be greater than 0.05.